Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (12): 1233-1242.DOI: 10.3724/SP.J.1077.2012.12111
• Review • Next Articles
WANG Fang1,2,3, LIANG Chun-Sheng1,2,3, XU Da-Liang1,2,3, CAO Hui-Qun1,2,3, SUN Hong-Yuan1,2,3, LUO Zhong-Kuan1,2,3
Received:
2012-02-24
Revised:
2012-05-08
Published:
2012-12-20
Online:
2012-11-19
About author:
WANG Fang. E-mail: wfang7373@yahoo.com.cn
Supported by:
Shenzhen Key Laboratory of New Lithium-ion Battery and Mesoporous Materials (20110205); Shenzhen Science and Technology Fund (ZYA201106090033A)
CLC Number:
WANG Fang, LIANG Chun-Sheng, XU Da-Liang, CAO Hui-Qun, SUN Hong-Yuan, LUO Zhong-Kuan. Research Progress of Lithium-air Battery[J]. Journal of Inorganic Materials, 2012, 27(12): 1233-1242.
Add to citation manager EndNote|Ris|BibTeX
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367.[2] Beattie S D, Manolescu D M, Blair S L. High-capacity lithium–air cathodes. J. Electrochem. Soc., 2009, 156(1): A44–A47.[3] Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett., 2010, 1(14): 2193–2203.[4] Abraham K M, Jiang Z. A Polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc., 1996, 143(1): 1–5.[5] Ogasawara T, Debart A, Bruce P G, et al. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.[6] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935.[7] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries. J. Electrochem. Soc., 2012, 159(2): R1–R30.[8] Younesi S R, Urbonaite S, Bj?refors F, et al. Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources, 2011, 196(22): 9835–9838.[9] Sandhu S S, Fellner J P, Brutchen G W. Diffusion-limited model for a lithium/air battery with an organic electrolyte. J. Power Sources, 2007, 164(1): 365–371.[10] Mirzaeian M, Hal P J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009, 54(28): 7444–7451.[11] Tran C, Yang X Q, Qu D Y. Investigation of the gas-diffusion-electrode used as lithium-air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J. Power Sources, 2010, 195(7): 2057–2063.[12] Zheng J P, Liang R Y, Hendrickson M, et al. Theoretical energy density of Li–air batteries. J. Electrochem. Soc., 2008, 155(6): A432–A437.[13] Xiao J, Wang D H, Xu W, et al. Optimization of air electrode for Li-air batteries. J. Electrochem. Soc., 2010, 157(4): A487–A492.[14] Zhang J G, Wang D Y, Xu W, et al. Ambient operation of Li/Air batteries. J. Power Sources, 2010, 195(13): 4332–4337.[15] Eswaran M, Munichandraiah N, Scanlon L G. High capacity Li–O2 cell and electrochemical impedance dpectroscopy dtudy. Electrochem. Solid State Lett., 2010, 13(9): A121–A124.[16] Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J. Power Sources, 2010, 195(5): 1370–1374.[17] Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun., 2009, 11(6): 1127–1130.[18] Xiao J, Xu W, Wang D Y, et al. Hybrid air-electrode for Li/Air batteries. J. Electrochem. Soc., 2010, 157(3): A294–A297.[19] Kichambare P, Kumar J, Rodrigues S, et al. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J. Power Sources, 2011, 96(6): 3310–3316.[20] Zhang G Q, Zheng J P, Liang R, et al. α-MnO2 carbon nanotube carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. J. Electrochem. Soc., 2011, 158(7): A822–A827.[21] Zhang G Q, Zheng J P, Liang R, et al. Lithium–air batteries using SWNTCNF buckypapers as air electrodes. J. Electrochem. Soc., 2010, 157(8): A953–A956.[22] Li Y L, Wang J J, Li X F, et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem. Commun., 2011, 13(7): 668–672.[23] Li J X, Wang N, Zhao Y, et al. MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem. Commun., 2011, 13(7): 698–700.[24] Tang L H, Wang Y, Li Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater., 2009, 19(17): 2782–2789.[25] Li Y L, Wang J J, Li X F, et al. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun., 2011, 47(33): 9438–9440.[26] Sun B, Wang B, Su D W, et al. Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 2012, 50(2): 727–733.[27] Wang L, Zhao X, Lu Y H, et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc., 2011, 158(12): A1379–A1382.[28] Dong S M, Chen X, Zhang K J, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chem. Commun., 2011, 47(40): 11291–11293.[29] Xiao J, Mei D H, Li X L, et al. Hierarchically porous graphene asa lithium air battery electrode. Nano Lett., 2011, 11(11): 5071–5078.[30] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc., 2011, 133(45): 18038–18041.[31] Débart A, Bao J L, Bruce P G, et al. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sources, 2007, 174(2): 1177–1182.[32] Lu Y C, Gasteiger H A, Yang S H, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State Lett., 2010, 13(6): A69–A72.[33] Kraytsberg A, Ein-Eli Y. Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources, 2011, 196(3): 886–893.[34] Andrei P, Zheng J P, Hendrickson M, et al. Some possible approaches for improving the energy density of Li-air batteries. J. Electrochem. Soc., 2010, 157(12): A1287–A1295.[35] Read J. Characterization of the lithium/oxygen organic electrode battery. J. Electrochem. Soc., 2002, 149(9): A1190–A1195.[36] Seriani N. Ab initio thermodynamics of lithium oxides from bulk phases to nanoparticles. Nanotech., 2009, 20(44): 1–7.[37] Lu Y C, Gasteiger H A, Crumlin E, et al. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc., 2010, 157(9): A1016–A1025.[38] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles a highly active bifunctional electrocatalyst for rechargeable lithium- air batteries. J. Am. Chem. Soc., 2010, 132(35): 12170–12171.[39] Arakawa M, Yamaki J. Anodic oxidation of propylene carbonateand ethylene carbonate on graphite electrodes. J. Power Sources, 1995, 54(2): 250–254.[40] Kanamura K, Umegaki T, Ohashi M, et al. Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries. Electrochimica Acta, 2001, 47(3): 433–439.[41] Ida S, Thapa A K, Hidaka Y, et al. Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. J. Power Sources, 2012, 203(7): 159–164.[42] Cui Y M, Wen Z Y, Liu Y. A free-standing-type design for cathodes of rechargeable Li-O2 batteries. Energy Environ. Sci., 2011, 4(11): 4727–4734.[43] Chen J Z, Hummelsh?j J S, Thygesen K S, et al. The role of transition metal interfaces on the electronic transport in lithium-air batteries. Catalysis Today, 2011, 165(1): 2–9.[44] Liu H, Xing Y C. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochem. Commun., 2011, 13(6): 646–649.[45] Thapa A K, Ishihara T. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery. J. Power Sources, 2011, 196(16): 7016–7020.[46] Thapa A K, Hidaka Y, Hagiwara H, et al. Mesoporous ?-MnO2 air electrode modified with Pd for rechargeability in lithium-Air battery. J. Electrochem. Soc., 2011, 158(12): A1483–A1489.[47] Cheng H, Scott K. Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide?. Applied Catalysis B: Environmental, 2011, 108-109(6): 140–151.[48] Trahey L, Johnson C S, Bruce P G, et al. Activated lithium-metal-oxides as catalytic electrodes for Li-O2 cells. Electrochem. Solid State Lett., 2011, 14(5): A64–A66.[49] Zhang G Q, Hendrickson M, Plichta E J, et al. Preparation, characterization and electrochemical catalytic properties of hollandite Ag2Mn8O16 for Li-air batteries. J. Electrochem. Soc., 2012, 159(3): A310–A314.[50] Zhu A L, Wang H J, Qu W, et al. Low temperature pyrolyzed cobalt tetramethoxy phenylporphyrin catalyst and its applications as an improved catalyst for metal air batteries. J. Power Sources, 2010, 195(17): 5587–5595.[51] Zhang S S, Ren X M, Read J. Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochimica Acta, 2011, 56(12): 4544–4548.[52] Freunberger S A, Chen Y H, Bruce P G, et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed., 2011, 50(37): 8609–8613.[53] Zhang S S, Foster D, Read J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J. Power Sources, 2010, 195(4): 1235–1240.[54] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 2004, 104(10): 4303–4418.[55] Xu W, Xiao J, Zhang J, et al. Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J. Electrochem. Soc., 2009, 156(10): A773–A779.[56] Xu W, Xiao J, Wang D Y, et al. Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J. Electrochem. Soc., 2010, 157(2): A219–A224.[57] Xu W, Xiao J, Zhang J G, et al. Crown ethers in nonaqueous electrolytes for lithium/air batteries. Electrochem. Solid State Lett., 2010, 13(4): A48–A51.[58] Xu W, Viswanathan V V, Wang D Y, et al. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. J. Power Sources, 2011, 196(8): 3894–3899.[59] Xiao J, Hu J Z, Xu W, et al. Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J. Power Sources, 2011, 196(13): 5674–5678.[60] Xu W, Xu K, Viswanathan V V, et al. Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J. Power Sources, 2011, 196(22): 9631–9639.[61] Freunberger S A, Chen Y H, Bruce P G, et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc., 2011, 133(20): 8040–8047.[62] McCloskey B D, Bethune D S, Luntz A C, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett., 2011, 2(10): 1161–1166.[63] Lu Y C, Kwabi D G, Yang S H. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci., 2011, 4(8): 2999–3007.[64] Laoire C ?, Plichta E J, Abraham K M, et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C, 2010, 114(19): 9178–9186.[65] Laoire C ?, Plichta E J, Abraham K M, et al. Rechargeable lithium/ TEGDME-LiPF6/O2 battery. J. Electrochem. Soc., 2011, 158(3): A302–A308.[66] Peng Z Q, Freunberger S A, Bruce P G, et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed., 2011, 50(28): 6351–6355.[67] Kuboki T, Okuyama T, Ohsaki T, et al. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources, 2005, 146(l/2): 766–769.[68] Ye H, Huang J, Xu J J, et al. Li Ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J. Electrochem. Soc., 2007, 154(11): A1048–A1057.[69] Zhang D, Li R S, Yu A S, et al. Novel composite polymer electrolyte for lithium air batteries. J. Power Sources, 2010, 195(4): 1202–1206.[70] Giorgio F D, Soavi F, Mastragostino M. Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes. Electrochem. Commun., 2011, 13(10): 1090–1093.[71] Zhang J, Xu W, Liu W. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. J. Power Sources, 2010, 195(21): 7438–7444.[72] Zhang J, Xu W, Liu W, et al. Air dehydration membranes for nonaqueous lithium-air batteries. J. Electrochem. Soc., 2010, 157(8): A940–A946.[73] Crowther O, Meyer B, Salomon M, et al. Primary Li-air cell development. J. Power Sources, 2011, 196(3): 1498–1502.[74] Crowther O, Keeny D, Moureau D M, et al. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J. Power Sources, 2012, 202(6): 347–351.[75] Imanishi N, Hasegawa S, Zhang T, et al. Lithium anode for lithium- air secondary batteries. J. Power Sources, 2008, 185(2): 1392–1397.[76] Zhang T, Imanishi N, Hasegawa S, et al. Li/polymer electrolyte/ water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc., 2008, 155(12): A965–A969.[77] Zhang T, Imanishi N, Shimonishi Y, et al. stability of a water- stable lithium metal anode for a lithium–air battery with acetic acid-water solutions. J. Electrochem. Soc., 2010, 157(2): A214–A218.[78] Zhang T, Imanishi N, Shimonishi Y, et al. A novel high energy density rechargeable lithium-air battery. Chem. Comun., 2010, 46(10): 1661–1663.[79] Kumar J, Kumar B. Development of membranes and a study of their interfaces for rechargeable lithium-air battery. J. Power Sources, 2009, 194(2): 1113–1119.[80] Kumar B, Kumar J, Leese R, et al. A solid-state, rechargeable, long cycle life lithium–Air Battery. J. Electrochem. Soc., 2010, 157(1): A50–A54.[81] Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources, 2010, 195(1): 358–361.[82] Wang Y G, He P, Zhou H S. A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ. Sci., 2011, 4(12): 4994–4999. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | GUO Ziyu, ZHU Yunzhou, WANG Li, CHEN Jian, LI Hong, HUANG Zhengren. Effect of Zn2+ Catalyst on Microporous Structure of Porous Carbon Prepared from Phenolic Resin/Ethylene Glycol [J]. Journal of Inorganic Materials, 2025, 40(5): 466-472. |
[8] | LI Jianjun, CHEN Fangming, ZHANG Lili, WANG Lei, ZHANG Liting, CHEN Huiwen, XUE Changguo, XU Liangji. Peroxymonosulfate Activation by CoFe2O4/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic [J]. Journal of Inorganic Materials, 2025, 40(4): 440-448. |
[9] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[10] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[11] | XIN Zhenyu, GUO Ruihua, WUREN Tuoya, WANG Yan, AN Shengli, ZHANG Guofang, GUAN Lili. Pt-Fe/GO Nanocatalysts: Preparation and Electrocatalytic Performance on Ethanol Oxidation [J]. Journal of Inorganic Materials, 2025, 40(4): 379-387. |
[12] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[13] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[14] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[15] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||