Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (7): 673-679.DOI: 10.3724/SP.J.1077.2011.00673
• Review • Next Articles
ZHAO Yu-Juan, FENG Hai-Lan, ZHAO Chun-Song, SUN Zhao-Qin
Received:
2010-10-20
Revised:
2010-12-10
Published:
2011-07-20
Online:
2011-06-20
Supported by:
Beijing Municipal Natural Science Foundation (2093031); Beijing Municipal Eduction Committee Science and Technology (JX005012201001); Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201107104)
CLC Number:
ZHAO Yu-Juan, FENG Hai-Lan, ZHAO Chun-Song, SUN Zhao-Qin. Progress of Research on the Li-rich Cathode Materials xLi2MnO3· (1-x) LiMO2 (M=Co, Fe, Ni1/2Mn1/2…) for Li-ion Batteries[J]. Journal of Inorganic Materials, 2011, 26(7): 673-679.
Add to citation manager EndNote|Ris|BibTeX
[1] Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater., 2007, 19(15): 1963-1966. [2] 张联齐, 任丽彬, 刘兴江, 等. Li过量的层状结构锂离子电池材料Li1+xM1-xO2(x≥0)-I.LiAO2-Li2BO3(A=Co, Ni, Cr·…; B=Mn, Ti…)固熔体材料. 电源技术, 2009, 33(5): 426-429.[3] Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett., 1997(8): 725-726.[4] Tabuchi M, Nakashima A, Shigemura H, et al. Synthesis cation distribution,and electrochemical properties of Fe-substituted Li2MnO3 as a novel 4 V positive electrode material. J. Electrochem. Soc., 2002, 149(5): A509-A524.[5] Lu Z, Macneil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett., 2001, 4(11): A191-A194.[6] Lu Z, Beaulieu L Y, Donaberger R A. Synthesis, structure, and electrochemical behavior of Li[NiLiMn]O. J. Electrochem. Soc., 2002, 149(6): A778-A791[7] Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc., 2002, 149(7): A815-A822. [8] 王绥军, 赵煜娟, 赵春松, 等(WANG Sui-Jun, et al). 锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (x=1/5, 1/4, 1/3)的合成及电化学性能. 高等学校化学学报(Chem. J. Chinese U.), 2010, 30(12): 2358-2362.[9] Lee D K, Park S H, Amineb K, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources, 2006, 162(2): 1346-1350. [10] Tabuchi M, Nabeshima Y, Ado K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J. Power Sources, 2007, 174(2): 554-559.[11] Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials. Solid State Ionics, 2003, 164(1): 43-49.[12] Kim J M, Tsuruta S, Kumagai N. Electrochemcial properties of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2(0≤x≤1) solid solutions prepared by poly-vinyl alcohol(PVA) method. Electrochem. Commun., 2007, 9(1): 103-108.[13] Tang A, Huang K. Structure and electrochemical properties of Li1+yNi0.5AlxMn0.5-xO2synthesized by a new Sol-Gel method. Materials Chemistry and Physics, 2005, 93(1): 6-9. [14] Huang X K, Zhang Q S, Chang H T, et al. Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances. Journal of The Electrochemical Society, 2009, 156(3): A162-A168.[15] Lee Y J, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material. Nano Lett., 2008, 8(3): 957-961. [16] Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun., 2009(2): 218-220.[17] Numata K, Sakaki C, Yamanaka S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2- Li2MnO3. Solid State Ionics, 1999, 117(3/4): 257-263.[18] Sun Y C, Xia Y G, Noguchi H, et al. The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries. Journal of Power Sources, 2006, 159(2): 1353-1359.[19] Kim Y J, Hong Y S, Kim M G, et al. Li0.93 [Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite. Electrochem. Commun., 2007, 9(5): 1041-1046. [20] 赵春松. 锂离子电池富锂正极材料xLi2MnO3·(1-x)LiMO2 (M=Co, Ni0.5Mn0.5). 北京: 北京工业大学硕士论文, 2010.[21] Johnson C S, Li N, Thackerray M M, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50℃. Electrochem. Commun., 2007, 9(4): 787-795.[22] Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2·zLi[Mn0.5-y Ni0.5-yCo2y]O2. Solid State Ionics, 2009, 180(1): 50-56.[23] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc., 2006, 128(26): 8694-8698.[24] 王力臻, 刘勇标, 王先友, 等. 化学电源设计. 北京: 化学工业出版社, 2007: 12-13.[25] Tabuchi M, Nabeshima Y, Takeuchi T, et al. Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. Journal of Power Sources, 2010, 195(3): 834-844.[26] Cho J, Kim Y, Kim M G. Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode material. J. Phys. Chem. C, 2007, 111(7): 3192-3196. [27] Yu L Y, Qiu W H, Lian F, et al. Comparative study of layered 0.65Li[Li1/3Mn2/3]O2·0.35LiMO2 (M = Co, Ni1/2Mn1/2 and Ni1/3Co1/3Mn1/3) cathode materials. Materials Letters, 2008, 62(17/18): 3010-3013.[28] Myung S T, Izumi K, Komaba S, et al. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J. Phys. Chem. C, 2007, 111(10): 4061-4067 [29] Myung S T, Izumi K, Komaba S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium- ion batteries. Chem. Mater., 2005, 17(14): 3695-3704.[30] Kang Y J, Kim J H, Lee S W, et al. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochimica Acta, 2005, 50(24): 4784-4791.[31] Tan K S, Reddy M V, Rao GVS, et al. Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2) O2. Journal of Power Sources, 2005, 141(1): 129-142.[32] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27-32): 1794-1799.[33] Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3-(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun., 2004, 6(10): 1085-1091.[34] Johnson C S, Li N, Vaughey J T, et al. Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3-(1-x) Li1+yMn2-yO4(0 |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure [J]. Journal of Inorganic Materials, 2025, 40(7): 817-825. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[8] | HUANG Zipeng, JIA Wenxiao, LI Lingxia. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 647-655. |
[9] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[10] | ZHAO Kaixuan, LIU Wenpeng, DING Shoujun, DOU Renqin, LUO Jianqiao, GAO Jinyun, SUN Guihua, REN Hao, ZHANG Qingli. Nd:YLF Crystal Growth: Raw Materials Preparation by Melting Method and Property [J]. Journal of Inorganic Materials, 2025, 40(5): 529-535. |
[11] | GUO Ziyu, ZHU Yunzhou, WANG Li, CHEN Jian, LI Hong, HUANG Zhengren. Effect of Zn2+ Catalyst on Microporous Structure of Porous Carbon Prepared from Phenolic Resin/Ethylene Glycol [J]. Journal of Inorganic Materials, 2025, 40(5): 466-472. |
[12] | WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(5): 497-503. |
[13] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[14] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[15] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||