Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 552-562.DOI: 10.15541/jim20240345
CHEN Libo1(), SHENG Ying1, WU Ming1(
), SONG Jiling2, JIAN Jian1, SONG Erhong3(
)
Received:
2024-07-20
Revised:
2024-10-15
Published:
2025-05-20
Online:
2024-10-28
Contact:
WU Ming, associate professor. E-mail: wuming10@mails.jlu.edu.cn;About author:
CHEN Libo (2000-), male, Master candidate. E-mail: 1871066627@qq.com
Supported by:
CLC Number:
CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution[J]. Journal of Inorganic Materials, 2025, 40(5): 552-562.
Fig. 2 Structure analyses of samples (a, b) XRD patterns of (a) pure CN and Na/O-CNx, and (b) Na/O-CN3.0-yO2; (c) FT-IR spectra of pure CN, Na/O-CN3.0 and Na/O-CN3.0-40%O2
Fig. 5 Band structure analysis of pure CN and Na/O-CN3.0 (a) UV-Vis DRS spectra; (b) Related Tauc plots; (c) VB XPS spectra; (d) Band structure diagram
Fig. 6 Photocurrent and PL spectra analysis of pure CN and Na/O-CN3.0 samples (a) Photocurrent test; (b) EIS plots; (c) PL spectra; (d) Time-resolved PL spectra
Fig. 7 Photocatalytic hydrogen activity (a, b) Photocatalytic hydrogen evolution of (a) pure CN and Na/O-CNx, and (b) Na/O-CN3.0-yO2; (c) PHER of pure CN, Na/O-CN3.0 and Na/O-CN3.0-40%O2; (d) Cycling performance of Na/O-CN3.0
Catalyst | Synthesis temperature/℃ | Catalyst weight/mg | Sacrificial reagent/% (in volume) | Surface area/ (m2·g-1) | Activity compared with CN (times) | Ref. |
---|---|---|---|---|---|---|
Na/O-CN3.0 | 180 | 50 | TEOA 10% | 18.8 | 9.2 | This work |
3% NaCl-CN | 550 | 10 | TEOA 17% | 76.8 | 4.3 | [S1] |
KCN-10 | 550 | 50 | TEOA 10% | 11 | 5.6 | [S2] |
K(0.05)-CN | 550 | 50 | TEOA 17% | 11.1 | 5 | [S3] |
LiNa-K-CN2 | 520 | 50 | TEOA 10% | 116.2 | 15 | [S4] |
Na(30)-MCN | 550 | 100 | TEOA 10% | 56.1 | 12.9 | [S5] |
Na0.1-CNNTs | 650 | 20 | TEOA 10% | 94 | 11 | [S6] |
CN-Na-7 | 550 | 50 | TEOA 10% | 11.7 | 9.9 | [S7] |
CN-100 | 520 | 50 | TEOA 10% | 14.9 | 9.2 | [S8] |
(Na,O)g-C3N4 | 160 | 50 | ethyl alcohol 40% | - | 7 | [S9] |
CN0.05 | 550 | 20 | TEOA | 46.7 | 1.9 | [S10] |
GCN-Na-5 | 550 | 50 | TEOA | 10.3 | 1.5 | [S11] |
K@C3N4 | 600 | 100 | TEOA | 27.5 | 8 | [S12] |
Table S1 Photocatalytic hydrogen evolution performance under visible light irradiation (> 420 nm) and surface area of alkali metal doped carbon nitride[S1-S12]
Catalyst | Synthesis temperature/℃ | Catalyst weight/mg | Sacrificial reagent/% (in volume) | Surface area/ (m2·g-1) | Activity compared with CN (times) | Ref. |
---|---|---|---|---|---|---|
Na/O-CN3.0 | 180 | 50 | TEOA 10% | 18.8 | 9.2 | This work |
3% NaCl-CN | 550 | 10 | TEOA 17% | 76.8 | 4.3 | [S1] |
KCN-10 | 550 | 50 | TEOA 10% | 11 | 5.6 | [S2] |
K(0.05)-CN | 550 | 50 | TEOA 17% | 11.1 | 5 | [S3] |
LiNa-K-CN2 | 520 | 50 | TEOA 10% | 116.2 | 15 | [S4] |
Na(30)-MCN | 550 | 100 | TEOA 10% | 56.1 | 12.9 | [S5] |
Na0.1-CNNTs | 650 | 20 | TEOA 10% | 94 | 11 | [S6] |
CN-Na-7 | 550 | 50 | TEOA 10% | 11.7 | 9.9 | [S7] |
CN-100 | 520 | 50 | TEOA 10% | 14.9 | 9.2 | [S8] |
(Na,O)g-C3N4 | 160 | 50 | ethyl alcohol 40% | - | 7 | [S9] |
CN0.05 | 550 | 20 | TEOA | 46.7 | 1.9 | [S10] |
GCN-Na-5 | 550 | 50 | TEOA | 10.3 | 1.5 | [S11] |
K@C3N4 | 600 | 100 | TEOA | 27.5 | 8 | [S12] |
[1] | SU C W, PANG L D, QIN M, et al. The spillover effects among fossil fuel, renewables and carbon markets: evidence under the dual dilemma of climate change and energy crises. Energy, 2023, 274: 127304. |
[2] | LI Y M, ALHARTHI M, AHMAD I, et al. Nexus between renewable energy, natural resources and carbon emissions under the shadow of transboundary trade relationship from South East Asian economies. Energy Strategy Rev., 2022, 41: 100855. |
[3] | PANG L D, ZHU M N, YU H Y, et al. Is green finance really a blessing for green technology and carbon efficiency? Energy Econ., 2022, 114: 106272. |
[4] | INDRAWIRAWAN S, SUN H Q, DUAN X G, et al. Nanocarbons in different structural dimensions (0-3D) for phenol adsorption and metal-free catalytic oxidation. Appl. Catal. B Environ., 2015, 179: 352. |
[5] | LIN Y Y, HUNG K Y, LIU F Y, et al. Photocatalysts of quaternary composite, bismuth oxyfluoride/bismuth oxyiodide/graphitic carbon nitride: synthesis, characterization, and photocatalytic activity. Mol. Catal., 2022, 528: 112463. |
[6] | ZHANG Z, YANG L, LIU J R, et al. Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chin. Chem. Lett., 2025, 36(2): 110013. |
[7] | XU T, DING X T, CHENG H H, et al. Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater., 2023, 36(12): 2209661. |
[8] | MANDAL D, ANDRADA D M. Oil droplets cut to the chase. Nat. Chem., 2020, 12(12): 1089. |
[9] | NISHIYAMA H, YAMADA T, NAKABAYASHI M, et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598(7880): 304. |
[10] | TANG D, TAN G L, LI G W, et al. State-of-the-art hydrogen generation techniques and storage methods: a critical review. J. Energy Storage, 2023, 64: 107196. |
[11] | LI C Q, DU X, JIANG S, et al. Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv. Sci., 2022, 9(24): 2201773. |
[12] | HISATOMI T, DOMEN K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal., 2019, 2(5): 387. |
[13] | YI S S, ZHANG B X, WULAN B R, et al. Non-noble metals applied to solar water splitting. Energy Environ. Sci., 2016, 9(11): 145. |
[14] | JIAO Y Y, LI Y K, WANG J S, et al. Exfoliation-induced exposure of active sites for g-C3N4/N-doped carbon dots heterojunction to improve hydrogen evolution activity. Mol. Catal., 2020, 497: 111223. |
[15] | CHU X Y, LUAN B B, HUANG A X, et al. Controlled synthesis of 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions for efficient photocatalytic hydrogen evolution. Dalton Trans., 2024, 53(6): 2534. |
[16] | YANG Y, ZHOU C Y, WANG W J, et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J., 2021, 405: 126547. |
[17] | SONG B, CHEN M, ZENG G M, et al. Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review. J. Hazard. Mater., 2020, 398: 122957. |
[18] | XIANG Q J, YU J G, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc., 2012, 134(15): 6575. |
[19] | XIAO S N, DAI W R, LIU X Y, et al. Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution. Adv. Energy Mater., 2019, 9(22): 1900775. |
[20] | LI H H, WU Y, LI L, et al. Adjustable photocatalytic ability of monolayer g-C3N4 utilizing single-metal atom: density functional theory. Appl. Surf. Sci., 2018, 457: 735. |
[21] | SHANG Y Y, MA Y J, CHEN X, et al. Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride. Mol. Catal., 2017, 433: 128. |
[22] | YE Z W, YUE W H, TAYYAB M, et al. Simple one-pot, high-yield synthesis of 2D graphitic carbon nitride nanosheets for photocatalytic hydrogen production. Dalton Trans., 2022, 51(48): 18542. |
[23] | SHI J Y, ZHANG J, CUI Z W, et al. In situ growth of MOF- derived sulfur vacancy-rich CdS nanoparticles on 2D polymers for highly efficient photocatalytic hydrogen generation. Dalton Trans., 2022, 51(15): 5841. |
[24] | HUANG X, WU K Y, SU C, et al. Metal-organic framework Cu-BTC for overall water splitting: a density functional theory study. Chin. Chem. Lett., 2025, 36(4): 109720. |
[25] | WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1): 76. |
[26] | YI S S, YAN J M, WULAN B R, et al. Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation. Appl. Catal. B Environ., 2017, 200: 477. |
[27] | HE J J, SUN H Q, INDRAWIRAWAN S, et al. Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. J. Colloid Interface Sci., 2015, 456: 15. |
[28] | LI H H, WU Y, LI C, et al. Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl. Catal. B Environ., 2019, 251: 305. |
[29] | ZHOU A Q, YANG J M, ZHU X W, et al. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Met., 2022, 41(6):2118. |
[30] | ZHU X W, XU H M, BI C Z, et al. Piezo-photocatalysis for efficient charge separation to promote CO2 photoreduction in nanoclusters. Ultrason. Sonochem., 2023, 101: 106653. |
[31] | WU M, YAN J M, TANG X N, et al. Synthesis of potassium- modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution. ChemSusChem, 2014, 7(9): 2654. |
[32] | ZHU Y L, SUN Y Y, KHAN J, et al. NaClO-induced sodium-doped cyano-rich graphitic carbon nitride nanosheets with nitrogen vacancies to boost photocatalytic hydrogen peroxide production. Chem. Eng. J., 2022, 443: 136501. |
[33] | ZHAO X L, ZHANG Y G, LI F, et al. Salt-air template synthesis of Na and O doped porous graphitic carbon nitride nanorods with exceptional photocatalytic H2 evolution activity. Carbon, 2021, 179: 42. |
[34] | HAN X, KANG Y, SONG S, et al. Sodium ion doped graphitic carbon nitride with high crystallinity for superior photocatalytic hydrogen evolution efficiency. J. Mater. Chem. A, 2023, 11(34): 18213. |
[35] | DOU Q, HOU J H, HUSSAIN A, et al. One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J. Colloid Interface Sci., 2022, 624: 79. |
[36] | SUN Z Z, TAN Y Y, SHI X K, et al. General method to introduce π-electrons into oxygen-doped porous carbon nitride for photocatalytic hydrogen evolution and toluene oxidation. ACS Sustainable Chem. Eng., 2024, 12(2): 1051. |
[37] | WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis. Appl. Catal. B Environ., 2018, 231: 43. |
[38] | REN J X, ZHENG Y M, LIN H W, et al. Near-infrared light- activated g-C3N4 with effective n → π* electron transition for H2O2 production. Appl. Surf. Sci., 2023, 638: 158053. |
[39] | WU M, HE X, JING B H, et al. Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light. J. Hazard. Mater., 2020, 384: 121323. |
[40] | LI Y H, HO W K, LV K L, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci., 2018, 430: 380. |
[41] | LU X J, WANG Y, ZHANG X Y, et al. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic. J. Hazard. Mater., 2018, 341: 10. |
[42] | HU S Y, YU A C, LU R. A comparison study of sodium ion- and potassium ion-modified graphitic carbon nitride for photocatalytic hydrogen evolution. RSC Adv., 2021, 11(26): 15701. |
[43] | FANG W J, LIU J Y, YU L, et al. Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Appl. Catal. B Environ., 2017, 209: 631. |
[44] | MA R D, GUO X, SHI K X, et al. S-type heterojunction of MOS2/g-C3N4: construction and photocatalysis. J. Inorg. Mater., 2023, 38(10): 1176. |
[45] | CHEN X, LI H K, WU Y X, et al. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance. J. Colloid Interface Sci., 2016, 476: 132. |
[46] | KRÖGER J, JIMÉNEZ‐SOLANO A, SAVASCI G, et al. Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: melamine functionalized poly(heptazine imide). Adv. Energy Mater., 2021, 11(6): 2003016. |
[47] | LIU M Q, JIAO Y Y, QIN J C, et al. Boron doped C3N4 nanodots/ nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance. Appl. Surf. Sci., 2021, 541: 148558. |
[48] | YANG C W, XUE Z, QIN J Q, et al. Heterogeneous structural defects to prompt charge shuttle in g-C3N4 plane for boosting visible-light photocatalytic activity. Appl. Catal. B Environ., 2019, 259: 118094. |
[49] | SHI L, LIU G, ZHANG Y H, et al. Na, O co-doping and cyano groups synergistically adjust the band structure of g-C3N4 for improving photocatalytic oxygen evolution. Mater. Res. Bull., 2023, 167: 112423. |
[50] | GU J, CHEN H, JIANG F, et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride. J. Colloid Interface Sci., 2019, 540: 97. |
[51] | IQBAL O, ALI H, LI N, et al. A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Mater. Today Phys., 2023, 34: 101080. |
[52] | OU H H, LIN L H, ZHENG Y, et al. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater., 2017, 29(22): 1700008. |
[53] | ZHOU J, YANG Y, ZHANG C Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun., 2013, 49(77): 8605. |
[54] | ZHANG Y Z, ZONG S C, CHENG C, et al. One-pot annealing preparation of Na-doped graphitic carbon nitride from melamine and organometallic sodium salt for enhanced photocatalytic H2 evolution. Int. J. Hydrog. Energy, 2018, 43(30): 13953. |
[55] | GUO F, CHEN J L, ZHANG M W, et al. Deprotonation of g-C3N4 with Na ions for efficient nonsacrificial water splitting under visible light. J. Mater. Chem. A, 2016, 4(28): 10806. |
[56] | WU M, CHEN L B, LUO X, et al. Defective carbon nitride with dual-surface engineering for highly efficient photocatalytic hydrogen evolution under visible light irradiation. Langmuir, 2024, 40(34): 18153. |
[57] | MAKUŁA P, PACIA M, MACYK W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett., 2018, 9(23): 6814. |
[58] | YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater., 2017, 29(26): 1605148. |
[59] | WULANA B R, YI S S, LI S J, et al. Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Appl. Catal. B Environ., 2018, 231: 43. |
[1] | ZHANG Wenyu, GUO Ruihua, YUE Quanxin, HUANG Yarong, ZHANG Guofang, GUAN Lili. High-entropy Phosphide Bifunctional Catalyst: Preparation and Performance of Efficient Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1265-1274. |
[2] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[3] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[4] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[5] | DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics [J]. Journal of Inorganic Materials, 2021, 36(3): 277-282. |
[6] | Li Cuixia, SUN Huizhen, JIN Haize, SHI Xiao, LI Wensheng, KONG Wenhui. Construction and Photocatalytic Performance of 3D Hierarchical Pore rGO/TiO2 Composites [J]. Journal of Inorganic Materials, 2021, 36(10): 1039-1046. |
[7] | WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2020, 35(7): 781-788. |
[8] | WEI Xin, LU Zhanhui, WANG Luping, FANG Ming. Mechanism Study of Tetracycline High Efficient Photodegradation by Bi2WO6 Nanosheets under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2020, 35(3): 324-328. |
[9] | LI Zhifeng, TAN Jie, YANG Xiaofei, LIN Zuhong, HUAN Zhenglai, ZHANG Tingting. Preparation and Visible Light Photocatalytic Performance of BiOBr/Ti3C2 Composite Photocatalyst with Highly Exposed (001) Facets [J]. Journal of Inorganic Materials, 2020, 35(11): 1247-1254. |
[10] | LI Xiao-Ping, LI Yue-Jun, CAO Tie-Ping, SUN Da-Wei, WANG Xia, XI Xiao-Tian. Facile Synthesis of Bi/Bi2MoO6/TiO2 Composite Nanofibers with Enhanced Photocatalytic Activity under Visible Light [J]. Journal of Inorganic Materials, 2019, 34(11): 1193-1199. |
[11] | KE Yin-Huan, ZENG Min, JIANG Hong, XIONG Chun-Rong. Photocatalytic Reduction of Carbon Dioxide to Methanol over N-doped TiO2 Nanofibers under Visible Irradiation [J]. Journal of Inorganic Materials, 2018, 33(8): 839-844. |
[12] | TONG Qin, DONG Ya-Mei, YAN Liang, HE Dan-Nong. High-efficient Synthesis and Photocatalytic Properties of Ag/AgBr/TiO2 Monolithic Photocatalysts Using Sodium Alginate as Substrate [J]. Journal of Inorganic Materials, 2017, 32(6): 637-642. |
[13] | CAI Wei-Wei, LI Jiao, HE Jing, WANG Wei-Wei. Controlled Synthesis and Photocatalytic Activity Evaluation of Nanostructured Ag3PO4 [J]. Journal of Inorganic Materials, 2017, 32(3): 263-268. |
[14] | LU Qing, HUA Luo-Guang, CHEN Yi-Lin, GAO Bi-Fen, LIN Bi-Zhou. Preparation and Property of Oxygen-deficient Bi2WO6-x Photocatalyst Active in Visible Light [J]. Journal of Inorganic Materials, 2015, 30(4): 413-419. |
[15] | GUO Dong-Xue, ZHANG Qing-Hong, WANG Hong-Zhi, LI Yao-Gang, CAO Guang-Xiu. Preparation of RuO2/ZrO2/TaON Composite Photocatalyst and Its Photocatalytic Properties for Water Splitting Hydrogen Evolution [J]. Journal of Inorganic Materials, 2015, 30(10): 1025-1030. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||