Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 545-551.DOI: 10.15541/jim20240244
Previous Articles Next Articles
SUN Yuxuan1,2(), WANG Zheng1, SHI Xue1, SHI Ying1,2, DU Wentong1,2, MAN Zhenyong1, ZHENG Liaoying1, LI Guorong1(
)
Received:
2024-05-14
Revised:
2024-09-24
Published:
2025-05-20
Online:
2024-11-29
Contact:
LI Guorong, professor. E-mail: grli@mail.sic.ac.cnAbout author:
SUN Yuxuan (1999-), female, Master candidate. E-mail: sunyuxuan21@mails.ucas.ac.cn
Supported by:
CLC Number:
SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics[J]. Journal of Inorganic Materials, 2025, 40(5): 545-551.
Fig. 1 Lattice, density and SEM image of PSZT-xFe ceramics (a) Lattice parameters of the T phase; (b) SEM image of PSZT-0.40Fe ceramics with inset showing the grain size distribution; (c) Relative density and average grain size
Fig. 2 Dielectric properties, P-E loops and I-E loops of PSZTs (a) ε and tanδ versus temperatures at 100 kHz of PSZT-xFe ceramics; (b) ε and tanδ versus temperatures at frequencies of 1, 10 and 100 kHz for PSZT-0.40Fe ceramic with inset showing tanδ versus temperatures in the range of 20-250 ℃; (c) P-E loops of PSZT-xFe ceramics; (d) I-E loops of PSZT-xFe ceramics. Colorful figures are available on website
x | TC/℃ | Tθ/℃ | C/(×104) | EC/(kV·cm-1) | Pr/(μC·cm-2) | d33/(pC·N-1) | Qm | kp | σ | ε(1 kHz) |
---|---|---|---|---|---|---|---|---|---|---|
0.36 | 343 | 336 | 7.0 | 31.3 | 1.95 | 300 | 409 | 0.67 | 0.31 | 1361 |
0.38 | 343 | 335 | 8.4 | 32.8 | 2.76 | 295 | 415 | 0.66 | 0.31 | 1253 |
0.40 | 345 | 333 | 11.3 | 34.5 | 1.65 | 292 | 507 | 0.64 | 0.32 | 1098 |
0.42 | 343 | 332 | 10.6 | 34.2 | 2.11 | 294 | 499 | 0.65 | 0.31 | 1109 |
Table 1 Electro-mechanical properties of PSZT-xFe ceramics
x | TC/℃ | Tθ/℃ | C/(×104) | EC/(kV·cm-1) | Pr/(μC·cm-2) | d33/(pC·N-1) | Qm | kp | σ | ε(1 kHz) |
---|---|---|---|---|---|---|---|---|---|---|
0.36 | 343 | 336 | 7.0 | 31.3 | 1.95 | 300 | 409 | 0.67 | 0.31 | 1361 |
0.38 | 343 | 335 | 8.4 | 32.8 | 2.76 | 295 | 415 | 0.66 | 0.31 | 1253 |
0.40 | 345 | 333 | 11.3 | 34.5 | 1.65 | 292 | 507 | 0.64 | 0.32 | 1098 |
0.42 | 343 | 332 | 10.6 | 34.2 | 2.11 | 294 | 499 | 0.65 | 0.31 | 1109 |
Fig. 3 Electro-mechanical properties of PSZT-0.40Fe ceramic in the range of 20-240 ℃ (a) Impedance of 120-160 kHz; (b) Phase angle of 120-160 kHz; (c) Calculated Qm; (d) Calculated d31. Colorful figures are available on website
Fig. 4 Morphology and longitudinal piezoelectric response images of PSZT-0.40Fe ceramics in the same region (a) Morphology at room temperature; (b-f) Longitudinal piezoelectric response image in the range of 40-240 ℃. Colorful figures are available on website
[1] | IZZAH T N, AHMAD Z A, MOHAMAD H. Influence of sintering parameters on structural, dielectric and piezoelectric properties of Ca, La and Sr doped PZT (PCLSZT) electroceramics. Mater. J. Sci.: Mater. Electron., 2021, 32: 18095. |
[2] | JAFFE H. Piezoelectric ceramics. J. Am. Ceram., 1958, 41(11): 494. |
[3] | FU H X, COHEN R E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature, 2000, 403(6767): 281. |
[4] | REN X B. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature, 2004, 3(2): 91. |
[5] | JONES J L, SLAMOVICH E B, BOWMAN K J. Domain texture distributions in tetragonal lead zirconate titanate by X-ray and neutron diffraction. J. Appl. Phys., 2005, 97: 034113. |
[6] | LI Z, THONG H, ZHANG Y, et al. Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Adv. Funct. Mater., 2021, 31: 2005012. |
[7] | NGUYEN T N, THONG H, ZHU Z, et al. Hardening effect in lead-free piezoelectric ceramics. J. Mater. Res., 2021, 36: 996. |
[8] | SANGAWAR S R, PRAVEENKUMAR B, KUMAR H H, et al. Effect of Fe and Fe-Ba substitution on the piezoelectric and dielectric properties of lead zirconate titanate ceramics. Mater. Sci. Eng. B, 2011, 176(3): 242. |
[9] | CHEN C, WANG Y, LI Z Y, et al. Evolution of electromechanical properties in Fe-doped (Pb,Sr)(Zr,Ti)O3 piezoceramics. J. Adv. Ceram., 2021, 10(3): 587. |
[10] | LIU Y X, LI Z, THONG H C, et al. Grain size effect on piezoelectric performance in perovskite-based piezoceramics. Acta Phys. Sin., 2020, 69(21): 217704. |
[11] | ZHANG D, ZENG J. The microstructure and electric properties of Bi3+ and Al3+ co-doped PZT ceramics. Ferroelectrics, 2018, 534(1): 212. |
[12] | BRAJESH K, HIMANSHU A K, SHARMA H. Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Physica. B. Condens. Matter, 2012, 407(4): 635. |
[13] | LIN J Y, CUI B H, CHENG J R, et al. Achieving both large transduction coefficient and high Curie temperature of Bi and Fe co-doped PZT piezoelectric ceramics. Ceram. Int., 2023, 49(1): 474. |
[14] | LEE J K, YI J Y, HONG K S. The role of cation vacancies on micro-structure and piezoelectricity of lanthanum-substituted (Na1/2Bi1/2)TiO3 ceramics. Jpn. J. Appl. Phys., 2004, 43: 6188. |
[15] | DESU S B, PAYNE D A. Interfacial segregation in perovskites: III, micro-structure and electrical properties. J. Am. Ceram. Soc., 2010, 73(11): 3407. |
[16] | KALEM V, ÇAM İ, TIMUÇIN M. Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram. Int., 2011, 37(4): 1265. |
[17] | LANGMAN R A, RUNK R B, BUTLER S R. Isothermal grain growth of pressure-sintered PLZT ceramics. J. Am. Ceram. Soc., 1973, 56: 486. |
[18] | YANG W W, ZENG H R, YAN F, et al. Microstructure-driven excellent energy storage NaNbO3-based lead-free ceramics. Ceram. Int., 2022, 48(24): 37476. |
[19] | UCHINO K, ZHENG J, CHEN Y, et al. Loss mechanisms and high power piezoelectrics. J. Mater. Sci., 2006, 41(1): 217. |
[20] | PENG J, ZENG J, LI G, et al. Softening-hardening transition of electrical properties for Fe3+-doped (Pb0.94Sr0.05La0.01)(Zr0.53Ti0.47)O3 piezoelectric ceramics. Ceram. Int., 2017, 43(16): 13233. |
[21] | KUMARI N, MONGA S, ARIF M, et al. Higher permittivity of Ni-doped lead zirconate titanate, Pb[(Zr0.52Ti0.48)(1-x)Nix]O3, ceramics. Ceram. Int., 2019, 45(4): 4398. |
[22] | SUN X, DENG J, LIU L, et al. Dielectric properties of BiAlO3-modified (Na, K, Li)NbO3 lead-free ceramics. Mater. Res. Bull., 2016, 73: 437. |
[23] | MCKINSTRY S T. Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys., 2004, 95(3): 1397. |
[24] | LI C B W, THONG H C, LIU Y X, et al. Thermally induced domain reconfiguration in ferroelectric alkaline niobate. Adv. Funct. Mater., 2022, 32(38): 2204421. |
[25] | HINTERSTEIN M, ROUQUETTE J, HAINES J, et al. Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Phys. Rev. Lett., 2011, 107: 077602. |
[26] | KITTEL C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev., 1946, 70(11): 965. |
[27] | ANDRYUSHIN K, ANDRYUSHINA I, SADYKOV H, et al. The influence of thermodynamic history and external influences on the electrophysical properties of ferropiezoceramic materials based on a multicomposition system PZT-PMN- PZN+SiO2. J. Adv. Dielectr., 2020, 10: 2060012. |
[1] | FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481-488. |
[2] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[3] | LI Pengpeng, WANG Bing, WANG Yingde. Ultrafast CO Sensor Based on Flame-annealed Porous CeO2 Nanosheets for Environmental Application [J]. Journal of Inorganic Materials, 2021, 36(11): 1223-1230. |
[4] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[5] | HU Hao, JIANG Xiang-Ping, CHEN Chao, NIE Xin, HUANG Xiao-Kun, SU Chun-Yang. Influence of Ce 3+ Substitution on the Structure and Electrical Characteristics of Bismuth-layer Na0.5Bi8.5Ti7O27 Ceramics [J]. Journal of Inorganic Materials, 2019, 34(9): 997-1003. |
[6] | LI Jin, LIU Ting-Yu, YAO Shu-An, FU Ming-Xue, LU Xiao-Xiao. First Principles Study on the Property of O Vacancy in LuPO4 Crystal [J]. Journal of Inorganic Materials, 2019, 34(8): 879-884. |
[7] | CUI Lei, YANG Li-Juan, WANG Fan, XIA Wei-Wei. Fabrication of Flower-like Sn3O4 Hollow Microspheres and Their Photocatalytic Activity [J]. Journal of Inorganic Materials, 2016, 31(5): 461-465. |
[8] | DU Gang, LIANG Rui-Hong, LI Tao, LU Xiao-Rong, WANG Gen-Shui, DONG Xian-Lin. Recent Progress on Defect Dipoles Characteristics in Piezoelectric Materials [J]. Journal of Inorganic Materials, 2013, 28(2): 123-130. |
[9] | CAO Xiao-Xin, CHEN Yi-Lin, LIN Bi-Zhou, GAO Bi-Fen. Study of the Photocatalytic Performance of Oxygen-deficient TiO2 Active in Visible Light [J]. Journal of Inorganic Materials, 2012, 27(12): 1301-1305. |
[10] | LI Zai-Ying, DING Shi-Hua, SONG Tian-Xiu. Influence of Properties of Bi2(Zn1/3Nb2/3)2O7 Ceramics Doped with Na-Ni [J]. Journal of Inorganic Materials, 2010, 25(8): 825-828. |
[11] | ZHOU Zhi-Gang,TANG Zi-Long. Point Defects and Applications of Chemical Sensors Ceramics [J]. Journal of Inorganic Materials, 2009, 24(4): 650-660. |
[12] | HE Lian-Xing,LI Cheng-En,CHEN Ting-Guo,LIU Wei,ZHU Zen-Gang,SHUI Jia-Peng. Low-Frequency internal Friction of Lead Metaniobate Ceramics [J]. Journal of Inorganic Materials, 2000, 15(5): 827-932. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||