Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (10): 1137-1144.DOI: 10.15541/jim20250030
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Bo1(), FU Yimin1, CHEN Zheng1,2, SHI Ao1, ZHU Min1(
)
Received:
2025-01-20
Revised:
2025-02-24
Published:
2025-07-16
Online:
2025-07-16
Contact:
ZHU Min, associate professor, E-mail: mzhu@usst.edu.cnAbout author:
ZHANG Bo (1999-), male, Master candidate. E-mail: 15993162824@163.com
Supported by:
CLC Number:
ZHANG Bo, FU Yimin, CHEN Zheng, SHI Ao, ZHU Min. Near-infrared Responsive Biphasic Antibacterial Mesoporous Bioactive Glass Composite Scaffolds: Preparation and Antibacterial Performance[J]. Journal of Inorganic Materials, 2025, 40(10): 1137-1144.
Fig. 2 Physicochemical properties of MBG and modified powders (a) TEM image of MBG; (b) FT-IR spectra; (c) N2 adsorption-desorption isotherm curves; (d) Pore size distributions
Fig. 4 Photothermal response performance of PMBG@Cu/MBG-RSNO composite scaffold (a, b) Photothermal curves in (a) dry state environment and (b) wet state environment; (c) Photothermal cycling curves under 1.00 W/cm2 laser irradiation in dry state environment; (d-f) Thermal images under dry state environment at power densities of (d) 0.50, (e) 0.75 and (f) 1.00 W/cm2
Fig. 5 Analysis of NO· release from PMBG@Cu/MBG-RSNO composite scaffold (a) EPR spectra under continuous illumination for 15 and 60 min; (b) EPR spectra with a cumulative total illumination time of 15 min within 60 min under pulsed illumination; (c) Released content of NO·
Fig. 6 In vitro antibacterial effect and photothermal temperature analysis of PMBG@Cu/MBG-RSNO composite scaffold (a, b) Photos of (a) S. aureus group and (b) E. coli group; (c, d) OD values of (c) S. aureus and (d) E. coli under UV-Vis with asterisks indicating statistically significant difference of treatments vs. untreated culture (*** indicates p < 0.001); (e, f) The highest temperature of (e) S. aureus and (f) E. coli under 5 times pulsed illumination by 808 nm laser at a power density of 1.00 W/cm2
Fig. 7 Antimicrobial properties and SEM images of PMBG@Cu/MBG-RSNO composite scaffold with and without NIR illumination (a, b) Confocal images of (a) SYTO-9 and (b) PI staining for the blank group of S. aureus; (d, e) Confocal images of (d) SYTO-9 and (e) PI staining for PMBG@Cu/MBG-RSNO group of S. aureus; (g, h) Confocal images of (g) SYTO-9 and (h) PI staining for PMBG@Cu/ MBG-RSNO+NIR group of S. aureus; (c, f, i) SEM images of PMBG@Cu/MBG-RSNO composite scaffold with and without NIR illumination
[1] |
SZOSTAKOWSKI B, DEMAIO M. Ideal xenograft or a perfect bone substitute?-A retrospective review and analysis of the historical concept of ivory implants in orthopaedics. International Orthopaedics, 2020, 44(5): 1003.
DOI PMID |
[2] | NGUYEN T T, JANG Y S, KIM Y K, et al. Osteogenesis-related gene expression and guided bone regeneration of a strontium- doped calcium-phosphate-coated titanium mesh. ACS Biomaterials Science & Engineering, 2019, 5(12): 6715. |
[3] | PARÉ A, CHARBONNIER B, TOURNIER P, et al. Tailored three-dimensionally printed triply periodic calcium phosphate implants: a preclinical study for craniofacial bone repair. ACS Biomaterials Science & Engineering, 2020, 6(1): 553. |
[4] | NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007, 32(8/9): 762. |
[5] |
ZHANG L, YANG G, JOHNSON B N, et al. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 2019, 84: 16.
DOI PMID |
[6] | JODATI H, YILMAZ B, EVIS Z. A review of bioceramic porous scaffolds for hard tissue applications: effects of structural features. Ceramics International, 2020, 46(10): 15725. |
[7] | O'BRIEN F J. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3): 88. |
[8] | ZHU Y, KASKEL S. Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 176. |
[9] | DU X, WEI D, HUANG L, et al. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Materials Science & Engineering C-Materials for Biological Applications, 2019, 103: 109731. |
[10] | SHUKLA R, LAVORE F, MAITY S, et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature, 2022, 608(7922): 390. |
[11] |
WORLEY B V, SLOMBERG D L, SCHOENFISCH M H. Nitric oxide-releasing quaternary ammonium-modified poly(amidoamine) dendrimers as dual action antibacterial agents. Bioconjugate Chemistry, 2014, 25(5): 918.
DOI PMID |
[12] |
CHUG M K, BACHTIAR E, NARWOLD N, et al. Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces. Biomaterials Science, 2021, 9(8): 3100.
DOI PMID |
[13] |
BARRAUD N, HASSETT D J, HWANG S H, et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Journal of Bacteriology, 2006, 188(21): 7344.
DOI PMID |
[14] |
MIYAHARA Y, NAGAYA N, KATAOKA M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 2006, 12(4): 459.
DOI PMID |
[15] | ANJU B S, NAIR N R, RAJPUT J, et al. Role of ancillary ligands in S-nitrosothiol and NO generation from nitrite-thiol interactions at mononuclear zinc(II) sites. Chemical Science, 2024, 15(43): 18000. |
[16] | DE ALMEIDA H V, BOMEDIANO M P, CATORI D M, et al. Integrating 3D printing of biomaterials with nitric oxide release. Biomaterials Science, 2025, 13(4): 858. |
[17] | PERRIN-SARRADO C, ZHOU Y, SALGUES V, et al. S-nitrosothiols as potential therapeutics to induce a mobilizable vascular store of nitric oxide to counteract endothelial dysfunction. Biochemical Pharmacology, 2020, 173: 113686. |
[18] | SHEN Z, ZHENG S, XIAO S, et al. Red-light-mediated photoredox catalysis enables self-reporting nitric oxide release for efficient antibacterial treatment. Angewandte Chemie International Edition, 2021, 60(37): 20452. |
[19] | DONG K, JU E, GAO N, et al. Synergistic eradication of antibiotic- resistant bacteria based biofilms in vivo using a NIR-sensitive nanoplatform. Chemical Communications, 2016, 52(30): 5312. |
[20] | REN L, YANG K, GUO L, et al. Preliminary study of anti-infective function of a copper-bearing stainless steel. Materials Science and Engineering: C, 2012, 32(5): 1204. |
[21] | WANG S, YANG C, REN L, et al. Study on antibacterial performance of Cu-bearing cobalt-based alloy. Materials Letters, 2014, 129: 88. |
[22] | KOYANAGI T, SAKAMOTO M, TAKEUCHI Y, et al. Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. Journal of Oral Microbiology, 2010, 2(1): 5104. |
[23] | CORDEIRO J M, BARÃO V A R, DE AVILA E D, et al. Tailoring Cu2+-loaded electrospun membranes with antibacterial ability for guided bone regeneration. Biomaterials Advances, 2022, 139: 212976. |
[24] | TAYLOR-EDINBYRD K, LI T, KUMAR R. Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment. Physical Chemistry Chemical Physics, 2017, 19(19): 11947. |
[25] | ZHU M, ZHANG J H, TAO C L, et al. Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Materials Letters, 2014, 115: 194. |
[26] | DEKA J R, SONG Y, YANG Y C. The influence of isothermal aging, surfactant and inorganic precursors concentrations on pore size and structural order of mesoporous bioactive glass. Solid State Sciences, 2018, 84: 104. |
[27] | BRIGHT L M E, GARREN M R S, DOUGLASS M, et al. Synthesis and characterization of nitric oxide-releasing ampicillin as a potential strategy for combatting bacterial biofilm formation. ACS Applied Materials & Interfaces, 2023, 15(12): 15185. |
[28] | LIU Y, ZHANG S, ZHANG X H, et al. Porous PLGA/MBG scaffold enhanced bone regeneration through osteoimmunomodulation. Composites Part B-Engineering, 2024, 272: 16. |
[29] | HUANG Y, HUANG J, JIANG M, et al. NIR-triggered theranostic Bi2S3 light transducer for on-demand NO release and synergistic gas/photothermal combination therapy of tumors. ACS Applied Bio Materials, 2019, 2(11): 4769. |
[30] |
WANG Y, WEN Y, QU Y, et al. Pillar[5]arene based glyco-targeting nitric oxide nanogenerator for hyperthermia-induced triple-mode cancer therapy. Journal of Colloid and Interface Science, 2022, 615: 386.
DOI PMID |
[31] | ZHANG Z Q, WU J Y, SHANG Z H, et al. Photocalibrated NO release from N-nitrosated napthalimides upon one-photon or two- photon irradiation. Analytical Chemistry, 2016, 88(14): 7274. |
[32] |
DUAN Y T, WANG Y, LI X H, et al. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chemical Science, 2020, 11(1): 186.
DOI PMID |
[33] | GAO L, CHENG J, SHEN Z Q, et al. Orchestrating nitric oxide and carbon monoxide signaling molecules for synergistic treatment of MRSA infections. Angewandte Chemie International Edition, 2022, 61(3): 9. |
[34] | NGUYEN T K, SELVANAYAGAM R, HO K K K, et al. Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chemical Science, 2016, 7(2): 1016. |
[35] | SUN J, SONG L J, FAN Y, et al. Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Applied Materials & Interfaces, 2019, 11(30): 26581. |
[36] | SUN Y, XU W Z, JIANG C, et al. Gold nanoparticle decoration potentiate the antibacterial enhancement of TiO2 nanotubes via sonodynamic therapy against peri-implant infections. Frontiers in Bioengineering and Biotechnology, 2022, 10: 12. |
[37] | WU M Q, ZHANG Z Y, LIU Z R, et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today, 2021, 37: 12. |
[1] | ZHAO Lihua, WANG Yanshuai, YIN Xinwu, MAO Yeqiong, NIU Dechao. Bismuth Sulfide Nanoclusters-loaded Silica-based Hybrid Micelles: Preparation and Photothermal Antibacterial Property [J]. Journal of Inorganic Materials, 2025, 40(10): 1129-1136. |
[2] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[3] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[4] | ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency [J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124. |
[5] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[6] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[7] | DU Jiaheng, FAN Xinli, XIAO Dongqin, YIN Yiran, LI Zhong, HE Kui, DUAN Ke. Electrophoretic Coating of Magnesium Oxide on Microarc-oxidized Titanium and Its Biological Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448. |
[8] | WU Xuetong, ZHANG Ruofei, YAN Xiyun, FAN Kelong. Nanozyme: a New Approach for Anti-microbial Infections [J]. Journal of Inorganic Materials, 2023, 38(1): 43-54. |
[9] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[10] | FU Jiajun, SHEN Tao, WU Jia, WANG Chen. Nanozyme: a New Strategy Combating Bacterial [J]. Journal of Inorganic Materials, 2021, 36(3): 257-268. |
[11] | GUO Xiaowei, LI Yuyan, CHEN Nanchun, WANG Xiuli, XIE Qinglin. Construction of Sustainable Release Antimicrobial Microspheres Loaded with Potassium Diformate [J]. Journal of Inorganic Materials, 2021, 36(2): 181-187. |
[12] | WU Fan, ZHAO Ziyan, LI Bangxin, DONG Fan, ZHOU Ying. Interfacial Oxygen Vacancy of Bi2O2CO3/PPy and its Visible-light Photocatalytic NO Oxidation Mechanism [J]. Journal of Inorganic Materials, 2020, 35(5): 541-548. |
[13] | LI Kun-Qiang,QIAO Yu-Qin,LIU Xuan-Yong. Titanium Modified by Copper Ion Implantation: Anti-bacterial and Cellular Behaviors [J]. Journal of Inorganic Materials, 2020, 35(2): 158-164. |
[14] | ZHENG Qian, CAO Yuehan, HUANG Nanjian, DONG Fan, ZHOU Ying. BiOBr-BN Photocatalysts for Promoting Photocatalytic NO Oxidation and Inhibiting Toxic By-products [J]. Journal of Inorganic Materials, 2020, 35(11): 1255-1262. |
[15] | Feng ZHANG, Kai-Li ZHANG, Ming-Ming ZHOU, Chao CHEN, Zhi-Wei CAI, Guo-Hui WEI, Xing-Mao JIANG, Cheng ZHANG, RUHLMANN Laurent, Yao-Kang LÜ. A New Polyethylene Composite Material Based on Nano Silver Particels Loaded Graphene Oxide [J]. Journal of Inorganic Materials, 2019, 34(6): 633-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||