Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (9): 1035-1043.DOI: 10.15541/jim20240141
• RESEARCH ARTICLE • Previous Articles Next Articles
QU Mujing1(), ZHANG Shulan1, ZHU Mengmeng1,2, DING Haojie1, DUAN Jiaxin1, DAI Henglong1, ZHOU Guohong3(
), LI Huili1,2(
)
Received:
2024-03-22
Revised:
2024-04-30
Published:
2024-09-20
Online:
2024-05-16
Contact:
LI Huili, professor. E-mail: hlli@phy.ecnu.edu.cn;About author:
QU Mujing (2000-), female, Master candidate. E-mail: mjing2021@163.com
Supported by:
CLC Number:
QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs[J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043.
Fig. 3 (a, c, d, e) TEM and (b, f) HRTEM images of CsPbBr3 NCs, MIL-53 MOFs and CsPbBr3@MIL-53 nanocomposite phosphors (a, b) CsPbBr3 NCs; (c) MIL-53 MOFs; (d-f) CsPbBr3@MIL-53 nanocomposite phosphors with the inserted histogram in the figure (e) showing the statistical results of the particle size distribution of CsPbBr3 NCs in the composite phosphors
Fig. 5 BET specific surface area testing of MIL-53 and CsPbBr3@MIL-53 (a) N2 adsorption-desorption isotherms; (b) Pore size distribution; Colorful figures are available on website
Fig. 7 Optical properties of CsPbBr3@MIL-53 nanocomposite phosphors (a) Emission spectra of CsPbBr3@MIL-53 with different weights of MIL-53; (b) Time-resolved photoluminescence (TRPL) curves and PLQYs of the optimized sample as well as CsPbBr3 NCs; Colorful figures are available on website
Fig. 8 Thermal- and water-stability of CsPbBr3@MIL-53 nanocomposite phosphors and CsPbBr3 NCs (a, b) Temperature-dependent PL spectra (λex=365 nm); (c) Normalized temperature-dependent PL spectra; (d, e) PL spectra of samples immersed in water for different periods; (f) Normalized time-dependent PL spectra
Fig. 9 Properties of white LED device fabricated by using green CsPbBr3@MIL-53 nanocomposite phosphors (a) EL spectrum of white LED driven by 2.6 V and 35.0 mA with inset photo showing the lighted white LED device; (b) Color gamut coverage of the white LED in comparison with NTSC and Rec. 2020 standard
[1] | ZHANG M, LI Y, DU K, et al. One-step conversion of CsPbBr3 into Cs4PbBr6/CsPbBr3@Ta2O5 core-shell microcrystals with enhanced stability and photoluminescence. Journal of Materials Chemistry C, 2021, 9(4): 1228. |
[2] | KIM H, BAE S R, LEE T H, et al. Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping. Advanced Functional Materials, 2021, 31(28): 2102770. |
[3] | CAO Y, SHAO Y, ZHANG J, et al. The photothermal stability study of silica-coated CsPbBr3 perovskite nanocrystals. Journal of Solid State Chemistry, 2022, 311: 123086. |
[4] | XIE Q, WU D, WANG X, et al. Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots. Journal of Materials Chemistry C, 2019, 7(36): 11251. |
[5] | ZHU M, BAI J, CHEN R, et al. Synthesis and properties of B-Site doped all-lnorganic perovskite quantum dots. Chinese Journal of Applied Chemistry, 2021, 38(12): 1541. |
[6] | TAN J, MIN X, WANG X, et al. The study of preparation, structure and performance of sodium-rich anti-perovskite Na3SX (X=B, I) sodium ion solid electrolyte. Journal of Liaocheng University (Natural Science Edition), 2023, 36(6): 65. |
[7] | KIM M, KIM J H, KIM M, et al. Enhanced photoluminescence quantum efficiency and stability of water assisted CsPbBr3 perovskite nanocrystals. Journal of Industrial and Engineering Chemistry, 2020, 88: 84. |
[8] | YANG W, GAO F, QIU Y, et al. CsPbBr3-quantum-dots/ polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs. Advanced Optical Materials, 2019, 7(13): 1900546. |
[9] | XIAO H, FU J, WEI X, et al. Photoelectron-extractive and ambient- stable CsPbBr3@SnO2nanocrystals for high-performance photodetection. Laser & Photonics Reviews, 2022, 16(11): 2200276. |
[10] | LIU K, ZHAO J, PAN G, et al. Highly efficient and stable red perovskite quantum dots through encapsulation and sensitization of porous CaF2:Ce,Tb nanoarchitectures. Nanoscale, 2022, 14(11): 4263. |
[11] | DAR A A, USMAN M, ZHANG W, et al. Synergistic degradation of 2,4,4′-trihydroxybenzophenone using carbon quantum dots, ferrate, and visible light irradiation: insights into electron generation/consumption mechanism. ACS ES&T Engineering, 2022, 2(10): 1942. |
[12] | ZHU M, HU S, LI H. Research progress on stability of CsPbX3(X=Cl, Br, I) nanocrystals enhanced by encapsulation in porous frame structure. Journal of Liaocheng University (Natural Science Edition), 2023, 36(1): 52. |
[13] | ZHU M, LIU Y, DING H, et al. Space-confined growth of CsPbBr3 nanocrystals in mesoporous KIT-6 and application in LEDs. Journal of the American Ceramic Society, 2023, 106(12): 7503. |
[14] | XU Y, CAO M, XIA C, et al. Research progress on the stability of all-inorganic CsPbX3 perovskites nanocrystals. Journal of Liaocheng University (Natural Science Edition), 2019, 32(1): 69. |
[15] | XIONG Q, CHEN Y, YANG D, et al. Constructing strategies for hierarchically porous MOFs with different pore sizes and applications in adsorption and catalysis. Materials Chemistry Frontiers, 2022, 6(20): 2944. |
[16] | LU Y, LIU C, MEI C, et al. Recent advances in metal organic framework and cellulose nanomaterial composites. Coordination Chemistry Reviews, 2022, 461: 214496. |
[17] |
JIAO L, SEOW J Y R, SKINNER W S, et al. Metal-organic frameworks: structures and functional applications. Materials Today, 2019, 27: 43.
DOI |
[18] |
YUAN S, ZOU L, QIN J S, et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nature Communications, 2017, 8: 15356.
DOI PMID |
[19] | YAO Y, ZHAO X, CHANG G, et al. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures, 2023, 4(1): 2200187. |
[20] | ZHANG W, TAHERI-LEDARI R, SAEIDIRAD M, et al. Regulation of porosity in MOFs: a review on tunable scaffolds and related effects and advances in different applications. Journal of Environmental Chemical Engineering, 2022, 10(6): 108836. |
[21] | LI B, WEN H, YU Y, et al. Nanospace within metal-organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2: 21. |
[22] | RAMSAHYE N A, MAURIN G, BOURRELLY S, et al. Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO2 adsorption in the MIL-53 (Al) system. Physical Chemistry Chemical Physics, 2007, 9(9): 1059. |
[23] | FINSY V, MA L, ALAERTS L, et al. Separation of CO2/CH4 mixtures with the MIL-53(Al) metal-organic framework. Microporous and Mesoporous Materials, 2009, 120(3): 221. |
[24] | CHEN K, SINGH R, GUO J, et al. Electrical regulation of CO2 adsorption in the metal-organic framework MIL-53. ACS Applied Materials & Interfaces, 2022, 14(11): 13904. |
[25] | CAI G, JIANG H. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563. |
[26] | KHUDOZHITKOV A E, ARZUMANOV S S, TOKTAREV A V, et al. Dissecting the effects of water guest adsorption and framework breathing on the AlO4(OH)2 centres of metal-organic framework MIL-53 (Al) by solid state NMR and structural analysis. Physical Chemistry Chemical Physics, 2021, 23(34): 18925. |
[27] | MONSON P A. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous and Mesoporous Materials, 2012, 160: 47. |
[28] | CYCHOSZ K A, THOMMES M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering, 2018, 4(4): 559. |
[29] | THOMMES M, SCHLUMBERGER C. Characterization of nanoporous materials. Annual Review of Chemical and Biomolecular Engineering, 2021, 12(1): 137. |
[30] |
CYCHOSZ K A, GUILLET-NICOLAS R, GARCÍA-MARTÍNEZ J, et al. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46(2): 389.
DOI PMID |
[31] | SCHLUMBERGER C, THOMMES M. Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review. Advanced Materials Interfaces, 2021, 8(4): 2002181. |
[32] | XUAN T, HUANG J, LIU H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chemistry of Materials, 2019, 31(3): 1042. |
[33] | LI M, ZHANG X, MATRAS-POSTOLEK K, et al. An anion-driven Sn2+ exchange reaction in CsPbBr3 nanocrystals towards tunable and high photoluminescence. Journal of Materials Chemistry C, 2018, 6(20): 5506. |
[34] | PEDERSON L R. Two-dimensional chemical-state plot for lead using XPS. Journal of Electron Spectroscopy and Related Phenomena, 1982, 28(2): 203. |
[35] | LI M, ZHANG X, YANG P. Controlling the growth of a SiO2 coating on hydrophobic CsPbBr3 nanocrystals towards aqueous transfer and high luminescence. Nanoscale, 2021, 13(6): 3860. |
[36] | IMANIPOOR J, MOHAMMADI M, DINARI M, et al. Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53(Al) metal-organic framework adsorbent. Journal of Chemical & Engineering Data, 2021, 66(1): 389. |
[1] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[2] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[3] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[4] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[5] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[6] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[7] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[8] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[9] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[10] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[11] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[12] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[13] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[14] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
[15] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||