Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (12): 1377-1383.DOI: 10.15541/jim20240243
Special Issue: 【结构材料】超高温结构陶瓷(202412)
• RESEARCH ARTICLE • Previous Articles Next Articles
GOU Yanzi(), KANG Weifeng, ZHANG Qingyu
Received:
2024-05-14
Revised:
2024-06-26
Published:
2024-07-03
Online:
2024-07-03
About author:
GOU Yanzi (1984-), associate professor. E-mail: y.gou2012@hotmail.com
Supported by:
CLC Number:
GOU Yanzi, KANG Weifeng, ZHANG Qingyu. Preparation of Nearly Stoichiometric SiC(Ti) Fibers with Highly Crystalline Microstructure from Polytitanocarbosilane[J]. Journal of Inorganic Materials, 2024, 39(12): 1377-1383.
Polymer | LPCS* | PTCS-2* | PTCS-6* | PTCS-10* |
---|---|---|---|---|
A2100/A1250 | 1.01 | 0.98 | 0.95 | 0.85 |
Silicon content/ (%, in mass) | 43.34 | 43.78 | 43.48 | 42.07 |
Carbon content/ (%, in mass) | 40.44 | 40.71 | 41.28 | 40.87 |
Oxygen content/ (%, in mass) | 1.32 | 1.58 | 2.52 | 3.11 |
Titanium content/ (%, in mass) | - | 0.36 | 1.00 | 1.81 |
Mn | 1126 | 1152 | 1249 | 1140 |
PDI | 2.32 | 2.33 | 2.25 | 2.21 |
Ceramic yield/ (%, in mass) | 49.9 | 61.6 | 64.2 | 67.5 |
Table 1 Analytic results of LPCS*, PTCS-2*, PTCS-6*, and PTCS-10*
Polymer | LPCS* | PTCS-2* | PTCS-6* | PTCS-10* |
---|---|---|---|---|
A2100/A1250 | 1.01 | 0.98 | 0.95 | 0.85 |
Silicon content/ (%, in mass) | 43.34 | 43.78 | 43.48 | 42.07 |
Carbon content/ (%, in mass) | 40.44 | 40.71 | 41.28 | 40.87 |
Oxygen content/ (%, in mass) | 1.32 | 1.58 | 2.52 | 3.11 |
Titanium content/ (%, in mass) | - | 0.36 | 1.00 | 1.81 |
Mn | 1126 | 1152 | 1249 | 1140 |
PDI | 2.32 | 2.33 | 2.25 | 2.21 |
Ceramic yield/ (%, in mass) | 49.9 | 61.6 | 64.2 | 67.5 |
[1] | BUNSELL A R, PIANT A. A review of the development of three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006, 41(3): 823. |
[2] | WANG P, LIU F, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites. Journal of Materials Science and Technology, 2019, 35(12): 2743. |
[3] | SCHAWALLER D, CLAUSS B, BUCHMEISER M R. Ceramic filament fibers — a review. Macromolecular Materials and Engineering, 2012, 297(6): 502. |
[4] | ZHANG Q, CHEN T, KANG W, et al. Synthesis of polytitanocarbosilane and preparation of Si-C-Ti-B fibers. Processes, 2023, 11: 1189. |
[5] | KANG W, ZHANG Q, GOU Y. Fabrication of highly crystalline titanium-containing SiC fibers with different boron contents exhibiting excellent electromagnetic wave absorption. Journal of Materials Science, 2024, 59(7): 2739. |
[6] |
WU S, GOU Y, WANG Y, et al. Effect of heat treatment on composition, microstructure and mechanical property of domestic KD-SA SiC fibers. Journal of Inorganic Materials, 2023, 38(5): 569.
DOI |
[7] | XIANG Y, WU S, YU J, et al. Long-time oxidation behavior of the nearly stoichiometric polycrystalline SiC fibers under air atmosphere at different temperatures. Journal of the European Ceramic Society, 2024, 44(6): 3569. |
[8] | KANG W, CHEN J, ZHANG Y, et al. SiC fibers with different diameters exhibiting excellent high-temperature resistance and oxidation resistance. Journal of Materials Research and Technology, 2023, 23: 1559. |
[9] | ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High- strength alkali-resistant sintered SiC fibre stable to 2200 ℃. Nature, 1998, 391(6669): 773. |
[10] | TAKEDA M, SAEKI A, SAKAMOTO J I, et al. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers. Journal of the American Ceramic Society, 2000, 83(5): 1063. |
[11] | BHATT R, SOLA F, EVANS L, et al. Microstructural, strength, and creep characterization of Sylramic™, Sylramic™-iBN and super Sylramic™-iBN SiC fibers. Journal of the European Ceramic Society, 2021, 41(9): 4697. |
[12] | CHOLLON G, ALDACOURROU B, CAPES L, et al. Thermal behaviour of a polytitanocarbosilane-derived fibre with a low oxygen content: the Tyranno Lox-E fibre. Journal of Materials Science, 1998, 33(4): 901. |
[13] | LIPOWITZ J, RABE J A, ZANGVIL A, et al. Structure and properties of SylramicTM silicon carbide fiber -- a polycarbosilane, stoichiometric β-SiC composition. Ceramic Engineering and Science Proceedings, 1997, 18(3): 147. |
[14] | JONES R E, PETRAK D, RABE J, et al. SylramicTM SiC fibers for CMC reinforcement. Journal of Nuclear Materials, 2000, 283: 556. |
[15] | 宋永才, 冯春祥, 陆逸, 等. 聚钛碳硅烷的新合成法及其研究. 国防科技大学学报, 1991, (1): 31. |
[16] | 宋永才. 高含钛量碳化硅纤维的研制. 国防科技大学学报, 1989(2): 101. |
[17] | 杨一明, 冯春祥, 陆逸, 等. 聚钛碳硅烷及含钛碳化硅纤维的制备. 宇航材料工艺, 1991(3): 20. |
[18] | 王亦菲, 赵鹏, 宋永才, 等. 富碳的含钛碳化硅纤维先驱体的合成. 宇航材料工艺, 2001(2): 24. |
[19] |
WANG P, GOU Y, WANG H. Third generation SiC fibers for nuclear applications. Journal of Inorganic Materials, 2020, 35(5): 525.
DOI |
[20] | SONG L, FAN B, CHEN Y, et al. Ultralight and hyperelastic SiC nanofiber aerogel spring for personal thermal energy regulation. Journal of Advanced Ceramics, 2022, 11(8): 1235. |
[21] | WANG P, GOU Y, WANG H, et al. Revealing the formation mechanism of the skin-core structure in nearly stoichiometric polycrystalline SiC fibers. Journal of the European Ceramic Society, 2020, 40(6): 2295. |
[22] | CHEN J, ZHANG Y, YAN D, et al. Flexible ultrafine nearly stoichiometric polycrystalline SiC fibers with excellent oxidation resistance and superior thermal stability up to 1900 ℃. Journal of the European Ceramic Society, 2022, 42(5): 1938. |
[23] | YAN D, CHEN J, ZHANG Y, et al. B4C/SiC ceramic hollow microspheres prepared by slurry-coating and precursor conversion method. Journal of the European Ceramic Society, 2022, 42(2): 392. |
[24] | ZHANG Y, CHEN J, YAN D, et al. Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon, 2021, 182: 435. |
[25] | ZHANG Y, WANG Y, CHEN J, et al. Effects of PyC coating on SiC fibers after ultra-high temperature annealing. Ceramics International, 2022, 48(5): 6826. |
[26] | ZHANG Y, CHEN T, CHEN J, et al. The effects of annealing atmosphere and intrinsic component on high temperature evolution behaviors of SiC fibers. Materials Science and Engineering: A, 2022, 848: 143363. |
[1] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[2] | WANG Yuanjie, PEI Xueliang, LI Haoyi, XU Xin, HE Liu, HUANG Zhengren, HUANG Qing. Crosslinking of Active Polycarbosilane Initiated by Free Radical and Its Application in the Preparation of SiC Fibers [J]. Journal of Inorganic Materials, 2021, 36(9): 967-973. |
[3] | WANG Xi,WANG Kejie,BAI Hui,SONG Zhuolin,WANG Bo,ZHANG Chengyu. Creep Properties and Damage Mechanisms of 2D-SiCf/SiC Composites Prepared by CVI [J]. Journal of Inorganic Materials, 2020, 35(7): 817-821. |
[4] | WANG Pengren, GOU Yanzi, WANG Hao. Third Generation SiC Fibers for Nuclear Applications [J]. Journal of Inorganic Materials, 2020, 35(5): 525-531. |
[5] | Han-Qing YU, Zhi-Jun DONG, Guan-Ming YUAN, Ye CONG, Xuan-Ke LI, Yong-Ming LUO. Boron-carbon doped Silicon Carbide Fibers: Preparation and Property [J]. Journal of Inorganic Materials, 2019, 34(5): 493-501. |
[6] | SHI Xu-Guo, LI Ming-Yuan, MA Wei-Gang, ZHOU Xin-Gui, ZHANG Xing. Experimental Study on Thermal Transport Property of KD-II SiC Fiber [J]. Journal of Inorganic Materials, 2018, 33(7): 756-760. |
[7] | WANG Guo-Dong, SONG Yong-Cai. Enhancing Mechanical Property of SiC Fiber by Decreasing Fiber Diameter through a Modified Melt-spinning Process [J]. Journal of Inorganic Materials, 2018, 33(7): 721-727. |
[8] | MU Yang, DENG Jia-Xin, LI Hao, ZHOU Wan-Cheng. Comparison of High-temperature Dielectric and Microwave Absorbing Property of Two Continuous SiC Fibers [J]. Journal of Inorganic Materials, 2018, 33(4): 427-433. |
[9] | ZUO Ya-Zhuo, LI Hong, WANG Shao-Lei, YANG Min, REN Mu-Su, SUN Jin-Liang. Ablation Behavior of (C-SiC)f/C Composites [J]. Journal of Inorganic Materials, 2017, 32(11): 1141-1146. |
[10] | CAO Shi-Yi, WANG Jun, WANG Hao, WANG Xiao-Zhou. Influence of Free Carbon Elimination on Microstructure and Property of SiC Fibers [J]. Journal of Inorganic Materials, 2016, 31(5): 529-534. |
[11] | YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities [J]. Journal of Inorganic Materials, 2016, 31(11): 1157-1165. |
[12] | YUAN Wen-Yu, CHENG Lai-Fei,WU Heng, LIU Yong-Sheng. Effect of Silicon Source on Biomorphic SiC Fibers Converted from Natural Fibers [J]. Journal of Inorganic Materials, 2015, 30(2): 159-164. |
[13] | ZHANG Rong-Jun, YANG Yan-Qing, SHEN Wen-Tao. Preparation and Tensile Test of SiC Fiber Fabricated by Three-stage Chemical Vapor Deposition [J]. Journal of Inorganic Materials, 2010, 25(8): 840-844. |
[14] | WANG Lei1,2, LU Qing-Mei1,2, ZHANG Xin1,2, ZHANG Jiu-Xing1,2. Effect of Spinning and Milling Time on Thermoelectric Properties of the p-type (Bi0.25Sb0.75)2Te3 Alloy [J]. Journal of Inorganic Materials, 2010, 25(6): 588-592. |
[15] | LIU Xu-Guang,WANG Ying-De,WANG Lei,XUE Jin-Gen,LAN Xin-Yan. Preparation and Microwave Electromagnetic Properties of Cross-shaped SiC Fibers [J]. Journal of Inorganic Materials, 2010, 25(4): 441-444. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||