Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (5): 529-534.DOI: 10.15541/jim20150502
• Orginal Article • Previous Articles Next Articles
CAO Shi-Yi, WANG Jun, WANG Hao, WANG Xiao-Zhou
Received:
2015-10-19
Revised:
2015-11-20
Published:
2016-05-20
Online:
2016-04-25
About author:
CAO Shi-Yi. E-mail: nudt2010@sina.com
Supported by:
CLC Number:
CAO Shi-Yi, WANG Jun, WANG Hao, WANG Xiao-Zhou. Influence of Free Carbon Elimination on Microstructure and Property of SiC Fibers[J]. Journal of Inorganic Materials, 2016, 31(5): 529-534.
H2/vol% | C content/wt% | Si content/wt% | C/Si atomic ratio |
---|---|---|---|
0 | 37.32 | 60.47 | 1.44 |
25 | 33.97 | 63.49 | 1.25 |
50 | 31.90 | 65.27 | 1.14 |
75 | 30.46 | 67.59 | 1.05 |
100 | 28.24 | 68.56 | 0.96 |
Table1 Relationship between element content and H2 concentration
H2/vol% | C content/wt% | Si content/wt% | C/Si atomic ratio |
---|---|---|---|
0 | 37.32 | 60.47 | 1.44 |
25 | 33.97 | 63.49 | 1.25 |
50 | 31.90 | 65.27 | 1.14 |
75 | 30.46 | 67.59 | 1.05 |
100 | 28.24 | 68.56 | 0.96 |
C/Si atomic ratio | Mole composition | Calculated density, ρt/% | Pore fraction, P/% |
---|---|---|---|
1.44 | SiC+0.44C | 3.06 | 13.1 |
1.25 | SiC+0.25C | 3.12 | 10.6 |
1.14 | SiC+0.14C | 3.16 | 8.2 |
1.05 | SiC+0.05C | 3.19 | 7.5 |
0.96 | 0.96SiC+0.04Si | 3.18 | 8.5 |
Table 2 Relationship between porosity and C/Si atomic ratio of SiC fibers
C/Si atomic ratio | Mole composition | Calculated density, ρt/% | Pore fraction, P/% |
---|---|---|---|
1.44 | SiC+0.44C | 3.06 | 13.1 |
1.25 | SiC+0.25C | 3.12 | 10.6 |
1.14 | SiC+0.14C | 3.16 | 8.2 |
1.05 | SiC+0.05C | 3.19 | 7.5 |
0.96 | 0.96SiC+0.04Si | 3.18 | 8.5 |
[1] | BUNSELL A R, PIANT A.A review of the development of three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006, 41(3): 823-839. |
[2] | ZHAO D F, WANG H Z, LI X D.Development of polymer derived SiC fiber.Journal of Inorganic Materials, 2009, 24(6): 1097-1104. |
[3] | SHIMOO T, KATASE Y, OKAMURA K, et al.Cabon elimination by heat-treatment in hydrogen and its effect on thermal stability of polycarbosilane-derived silicon carbide fibers.Journal of Materials Science, 2004, 39(20): 6243-6251. |
[4] | ZHANG G J, WU Y B, LIU C J, et al.Preparation of nearly stoichiometric SiC fibers derived from PCS by the control of atmosphere.Journal of Xiamen University (Natural Science). 2006, 45(5): 683-687. |
[5] | 赵爽. PIP工艺制备SiC/SiC复合材料的结构、性能与辐照行为研究. 长沙: 国防科技大学博士学位论文, 2013. |
[6] | SHA J J, HINOKI T, KOHYAM A.Microstructure and mechanical properties of Hi-Nicalon™ Type S fibers annealed and crept in various oxygen partial pressures.Materials Characterization, 2009, 60(8): 796-802. |
[7] | HASEGAWA Y, OKAMURA K.Synthesis of continuous silicon carbide fibre: Part 3 Pyrolysis process of polycarbosilane and structure of the products.Journal of Materials Science, 1983, 18(12): 3633-3648. |
[8] | TANG X Y, ZHANG L, TU H B, et al.Decarbonization mechanisms of polycarbosilane during pyrolysis in hydrogen for preparation of silicon carbide fibers.Journal of Materials Science, 2010, 45(21): 5749-5755. |
[9] | TAZI HEMIDA A, PAILLER R, NASLAIN R.Continuous SiC-based model monofilaments with a low free carbon content part I: from the pyrolysis of a polycarbosilane precursor under an atmosphere of hydrogen.Journal of Materials Science, 1997, 32(9): 2359-2366. |
[10] | SHIMOO T, OKAMURA K, ITO M, et al.High-temperature stability of low-oxygen silicon carbide fiber heat-treated under different atmosphere.Journal of Materials Science, 2000, 35(15): 3733-3739. |
[11] | TAKEDA M, SAEKI A, SAKAMOTO J I, et al.Effect of hydrogen amosphere on pyrolysis of cured polycarbosilane fibers.Journal of the American Ceramic Society, 2000, 83(5): 1063-1069. |
[12] | YAO R Q, WANG Y Y, FENG Z D.The effect of high temperature annealing on tensile strength and its mechanism of Hi-Nicalon SiC fibres under inert atmosphere.Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(9): 777-787. |
[13] | JING M, TAN T T, WANG C G, et al.Comparison on the micro-structure of Toray T800H and T800S carbon fiber.Materials Science and Technology, 2015, 23(2): 45-52. |
[14] | TAN T T, WANG C G, JING M, et al.Study on relationship between microstructure and mechanical property of PAN-based carbon fiber.Journal of Functional Materials, 2012, 43(16): 2226-2230. |
[15] | WANG D Y, SONG Y C, JIAN K.Effect of composition and structure on the specific resistivity of continuous silicon carbide fibers.Journal of Inorganic Materials, 2012, 27(2): 162-168. |
[1] | CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution [J]. Journal of Inorganic Materials, 2025, 40(5): 552-562. |
[2] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[3] | GOU Yanzi, KANG Weifeng, WANG Pengren. Influence of Sintering Conditions on Preparation of Nearly Stoichiometric SiC Fibers with Highly Crystalline Microstructure [J]. Journal of Inorganic Materials, 2025, 40(4): 405-414. |
[4] | LI Wei, XU Zhiming, GOU Yanzi, YIN Senhu, YU Yiping, WANG Song. Preparation and Performance of Sintered SiC Fiber-bonded Ceramics [J]. Journal of Inorganic Materials, 2025, 40(2): 177-183. |
[5] | LI Na, CAO Ruixiao, WEI Jin, ZHOU Han, XIAO Hongmei. Performance and Influencing Factors of Iron-based Catalyst for Ortho to Para Hydrogen Conversion [J]. Journal of Inorganic Materials, 2025, 40(1): 47-52. |
[6] | LIAN Minli, SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin. Supported Ni Catalysts from Ni-Mg-Al Hydrotalcite-like Compounds:Preparation and Catalytic Performance for Ammonia Decomposition [J]. Journal of Inorganic Materials, 2025, 40(1): 53-60. |
[7] | JING Xinxin, CHEN Biqing, ZHAI Jiaxin, YUAN Meiling. Ni-Co-B-RE (Sm, Dy, Tb) Composite Electrodes: Preparation by Chemical Deposition Method and Electrocatalytic Hydrogen Evolution Performance [J]. Journal of Inorganic Materials, 2024, 39(5): 467-476. |
[8] | GOU Yanzi, KANG Weifeng, ZHANG Qingyu. Preparation of Nearly Stoichiometric SiC(Ti) Fibers with Highly Crystalline Microstructure from Polytitanocarbosilane [J]. Journal of Inorganic Materials, 2024, 39(12): 1377-1383. |
[9] | HE Qian, TANG Wanlan, HAN Bingkun, WEI Jiayuan, LÜ Wenxuan, TANG Zhaomin. pH Responsive Copper-Doped Mesoporous Silica Nanocatalyst for Enhanced Chemo-Chemodynamic Tumor Therapy [J]. Journal of Inorganic Materials, 2024, 39(1): 90-98. |
[10] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[11] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[12] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[13] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[14] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[15] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||