Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (8): 903-910.DOI: 10.15541/jim20220115
• RESEARCH ARTICLE • Previous Articles Next Articles
WEI Tingting(), XU Huarui(
), ZHU Guisheng, LONG Shenfeng, ZHANG Xiuyun, ZHAO Yunyun, JIANG Xupeng, SONG Jinjie, GUO Ningjie, GONG Yipeng
Received:
2022-03-04
Revised:
2022-04-12
Published:
2022-08-20
Online:
2022-04-26
Contact:
XU Huarui, professor. E-mail: huaruixu@guet.edu.cnAbout author:
WEI Tingting(1995-), female, Master candidate. E-mail: 631359334@QQ.com
Supported by:
CLC Number:
WEI Tingting, XU Huarui, ZHU Guisheng, LONG Shenfeng, ZHANG Xiuyun, ZHAO Yunyun, JIANG Xupeng, SONG Jinjie, GUO Ningjie, GONG Yipeng. Preparation and Properties of BaTiO3 Ceramics by Low Temperature Cold Sintering[J]. Journal of Inorganic Materials, 2022, 37(8): 903-910.
Powder | D10/nm | D50/nm | D90/nm |
---|---|---|---|
A1 | 74 | 103 | 124 |
A2 | 76 | 107 | 129 |
Table 1 Size distribution of powders
Powder | D10/nm | D50/nm | D90/nm |
---|---|---|---|
A1 | 74 | 103 | 124 |
A2 | 76 | 107 | 129 |
Powder | Ba | Ti | O | C | Ba/Ti |
---|---|---|---|---|---|
A1 | 10.88 | 10.81 | 39.81 | 38.45 | 1.0075 |
A2 | 7.52 | 13.47 | 39.14 | 39.87 | 0.5583 |
Table 2 Relative atomic ratio of A1 and A2 powder surfaces
Powder | Ba | Ti | O | C | Ba/Ti |
---|---|---|---|---|---|
A1 | 10.88 | 10.81 | 39.81 | 38.45 | 1.0075 |
A2 | 7.52 | 13.47 | 39.14 | 39.87 | 0.5583 |
Process | Relative density | εr (1 kHz) | εr@Tc (1 kHz) | Tc (1 kHz) | tanδ |
---|---|---|---|---|---|
A2-CPS | 92.73% | 930 | 1413 | 128 ℃ | 0.08 |
A1-CPS-CS | 95.78% | 2768 | 5813 | 124 ℃ | 0.06 |
A2-CPS-CS | 96.62% | 2836 | 7274 | 123 ℃ | 0.03 |
Table 3 Relative density and dielectric properties of ceramics
Process | Relative density | εr (1 kHz) | εr@Tc (1 kHz) | Tc (1 kHz) | tanδ |
---|---|---|---|---|---|
A2-CPS | 92.73% | 930 | 1413 | 128 ℃ | 0.08 |
A1-CPS-CS | 95.78% | 2768 | 5813 | 124 ℃ | 0.06 |
A2-CPS-CS | 96.62% | 2836 | 7274 | 123 ℃ | 0.03 |
Process | Flux (in mass) | Temperature/Pressure | Time/h | Density/% | εr(1 kHz) | tanδ (1 kHz) | Heat treatment | Ref. |
---|---|---|---|---|---|---|---|---|
CSP-CS | Ba(OH)2/TiO2 soultion | 180 ℃/430 MPa | 1-3 h | 95 | 1760 | 0.04 | 700-900 ℃/3 h | [ |
CSP | NaOH-KOH | 300 ℃/520 MPa | 12 h | 98 | 1800 | 0.04 | - | [ |
Surface coating/CSP-CS | H2O, Ba(OH)2 solution | 220 ℃/500 MPa | 1 h | 97 | 1550 | 0.02 | 700-900 ℃/3 h | [ |
1 mol/L acetic acid/powder-CSP | 20% Ba(OH)2∙8H2O | 225 ℃/350 MPa | 1 h | 95 | 1440 | 0.09 | - | [ |
1 mol/L acetic acid/powder-CSP | 11% Sr(OH)2∙8H2O | 275 ℃/350 MPa | 1 h | 92 | 1500 | 0.08 | - | [ |
0.1 mol/L acetic acid/powder-CSP | 10% Ba(OH)2∙8H2O | 400 ℃/350 MPa | 1 h | 96 | 2830 | 0.03 | 600 ℃/0.5 h | Thiswork |
Table 4 Summary of cold sintering of BaTiO3 ceramics
Process | Flux (in mass) | Temperature/Pressure | Time/h | Density/% | εr(1 kHz) | tanδ (1 kHz) | Heat treatment | Ref. |
---|---|---|---|---|---|---|---|---|
CSP-CS | Ba(OH)2/TiO2 soultion | 180 ℃/430 MPa | 1-3 h | 95 | 1760 | 0.04 | 700-900 ℃/3 h | [ |
CSP | NaOH-KOH | 300 ℃/520 MPa | 12 h | 98 | 1800 | 0.04 | - | [ |
Surface coating/CSP-CS | H2O, Ba(OH)2 solution | 220 ℃/500 MPa | 1 h | 97 | 1550 | 0.02 | 700-900 ℃/3 h | [ |
1 mol/L acetic acid/powder-CSP | 20% Ba(OH)2∙8H2O | 225 ℃/350 MPa | 1 h | 95 | 1440 | 0.09 | - | [ |
1 mol/L acetic acid/powder-CSP | 11% Sr(OH)2∙8H2O | 275 ℃/350 MPa | 1 h | 92 | 1500 | 0.08 | - | [ |
0.1 mol/L acetic acid/powder-CSP | 10% Ba(OH)2∙8H2O | 400 ℃/350 MPa | 1 h | 96 | 2830 | 0.03 | 600 ℃/0.5 h | Thiswork |
[1] |
YANG H J, BAO W C, LU Z L, et al. High-energy storage performance in BaTiO3-based lead-free multilayer ceramic capacitors. Journal of Materials Research, 2021, 36(6): 1285-1294.
DOI URL |
[2] |
ZHAO P Y, CAI Z M, WU L W, et al. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. Journal of Advanced Ceramics, 2021, 10(6): 1153-1193.
DOI URL |
[3] |
IM T, PYO J, LEE J, et al. Fabrication of homogeneous nanosized nickel powders using a planetary ball mill: applications to multilayer ceramic capacitors (MLCCs). Powder Technology, 2021, 382(2021): 118-125.
DOI URL |
[4] |
WANG M J, YANG H, ZHANG Q L, et al. Low temperature sintering properties of LiF-doped BaTiO3-based dielectric ceramics for AC MLCCs. Journal of Materials Science: Materials in Electronics, 2015, 26(1): 162-167.
DOI URL |
[5] | WANG D W, ZHOU D, SONG K X, et al. Cold-sintered C0G multilayer ceramic capacitors. ACS Sustainable Chemistry, 2019, 5(7): 1900025. |
[6] |
WANG D W, SIAME B, ZHANG S Y, et al. Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. Journal of the European Ceramic Society, 2020, 40(12): 4029-4034.
DOI URL |
[7] | WANG D W, ZHOU D, ZHANG S Y, et al. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics. ACS Sustainable Chemistry, 2018, 6(2): 2438-2444. |
[8] |
HAO J Y, GUO J, ZHAO E, et al. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process. Ceramics International, 2020, 46(17): 27193-27198.
DOI URL |
[9] |
YANG C, LI J P, SHI H F, et al. Effects of the liquid phase content on the microstructure and properties of the ZrW2O8 ceramics with negative thermal expansion fabricated by the cold sintering process. Journal of the European Ceramic Society, 2020, 40(15): 6079-6086.
DOI URL |
[10] |
JIANG X P, ZHU G S, XU H R, et al. Preparation of high density ZnO ceramics by the Cold Sintering Process. Ceramics International, 2019, 45(14): 17382-17386.
DOI URL |
[11] |
ZHAO E, HAO J Y, XUE X, et al. Rutile TiO2 microwave dielectric ceramics prepared via cold sintering assisted two step sintering. Journal of the European Ceramic Society, 2021, 41(6): 3459-3465.
DOI URL |
[12] |
GUO H Z, BAKER A, GUO J, et al. Protocol for ultralow- temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano, 2016, 10(11): 10606-10614.
DOI URL |
[13] |
GUO H Z, BAKER A, GUO J, et al. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 2016, 99(11): 3489-3507.
DOI URL |
[14] |
TSUJI K, NDAYISHIMIYE A, LOWUM S, et al. Single step densification of high permittivity BaTiO3 ceramics at 300 ℃. Journal of the European Ceramic Society, 2020, 40(4): 1280-1284.
DOI URL |
[15] |
SADA T, NDAYISHIMIYE A, FAN Z M, et al. Surface modification of BaTiO3 with catechol surfactant and effects on cold sintering. Journal of Applied Physics, 2021, 129(18): 184102.
DOI URL |
[16] |
SADA T, TSUJI K, NDAYISHIMIYE A, et al. High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2∙8H2O. Journal of the European Ceramic Society, 2021, 41(1): 409-417.
DOI URL |
[17] |
SADA T, FAN Z M, NDAYISHIMIYE A, et al. In situ doping of BaTiO3 and visualization of pressure solution in flux-assisted cold sintering. Journal of the American Ceramic Society, 2021, 104(1): 96-104.
DOI URL |
[18] |
WANG D X, GUO H Z, MORANDI C S, et al. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Materials, 2018, 6(1): 016101.
DOI URL |
[19] |
BOSTON R, GUO J, FUNAHASHI S, et al. Reactive intermediate phase cold sintering in strontium titanate. RSC Advances, 2018, 8(36): 20372-20378.
DOI URL |
[20] |
USHER T M, KAVEY B, CARUNTU G, et al. Effect of BaCO3 impurities on the structure of BaTiO3 nanocrystals: implications for multilayer ceramic capacitors. ACS Applied Nano Materials, 2020, 3(10): 9715-9723.
DOI URL |
[21] |
REDA G M, FAN H Q, TIAN H L. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity. Advanced Powder Technology, 2017, 28(3): 953-963.
DOI URL |
[22] |
SIEMEK K, OLEJNICZAK A, KOROTKOV L N, et al. Investigation of surface defects in BaTiO3 nanopowders studied by XPS and positron annihilation lifetime spectroscopy. Applied Surface Science, 2022, 578(2022): 151807.
DOI URL |
[23] |
HUNG C C, RIMAN R E. An XPS investigation of hydrothermal and commercial barium titanate powders. KONA Powder Particle Journal, 1990, 8(1990): 99-104.
DOI URL |
[24] |
LIU G C, FAN H Q, XU J, et al. Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO2 ceramics. RSC Advances, 2016, 6(54): 48708-48714.
DOI URL |
[25] |
KOTA R, LEE B. Effect of lattice hydroxyl on the phase transition and dielectric properties of barium titanate particles. Journal of Materials Science: Materials in Electronics, 2007, 18(12): 1221-1227.
DOI URL |
[26] |
ZHENG Q, FAN H Q, LONG C B. Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics. Journal of Alloys and Compounds, 2012, 511(1): 90-94.
DOI URL |
[27] |
BEAUGER A, MUTIN J C, NIEPCE J C. Role and behaviour of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics. Journal of Materials Science, 1984, 19(1): 195-201.
DOI URL |
[28] |
LEE J K, HONG K S, JANG J W. Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. Journal of the American Ceramic Society, 2001, 84(9): 2001-2006.
DOI URL |
[29] |
PINCELOUP P, COURTOIS C, LERICHE A, et al. Hydrothermal synthesis of nanometer-sized barium titanate powders: control of barium/titanium ratio, sintering, and dielectric properties. Journal of the American Ceramic Society, 1999, 82(11): 3049-3056.
DOI URL |
[30] |
MARIA J P, KANG X Y, FLOYD R, et al. Cold sintering: current status and prospects. Journal of Materials Research, 2017, 32(17): 3205-3218.
DOI URL |
[1] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
[2] | YAO Xiaogang, PENG Haiyi, GU Zhongyuan, HE Fei, ZHAO Xiangyu, LIN Huixing. Polyphenylene Oxide/Ca0.7La0.2TiO3 Microwave Composite Substrate [J]. Journal of Inorganic Materials, 2022, 37(5): 493-498. |
[3] | Gang JIAN, Mei-Rui LIU, Chen ZHANG, Hui SHAO. Preparation of Fully-coated Ag@TiO2 Particle Fillers for High-k Composites [J]. Journal of Inorganic Materials, 2019, 34(6): 641-645. |
[4] | HAN Lin-Cai, DING Shi-Hua, SONG Tian-Xiu, HUANG Long, ZHANG Xiao-Yun, XIONG Zhong. ZBAS on the Structure and Dielectric Property of BaAl2Si2O8 [J]. Journal of Inorganic Materials, 2018, 33(8): 883-888. |
[5] | QU Jing-Jing, WEI Xing, LIU Fei, YUAN Chang-Lai, CHEN Guo-Hua, HUANG Xian-Pei. Heat-treatment on Crystallization and Dielecty Property of Mg-Al-Si-Ti-B Glass-ceramics [J]. Journal of Inorganic Materials, 2018, 33(12): 1309-1315. |
[6] | LIU Fei, HUANG Xian-Pei, YUAN Chang-Lai, CHEN Guo-Hua. Influence of Sintering Temperature and CaTiO3 Doping on Structure and Dielectric Properties for Instability Layered Can+1TinO3n+1 (n = 1) Ceramics [J]. Journal of Inorganic Materials, 2017, 32(5): 489-494. |
[7] | QU Jing-Jing, WEI Xing, SONG Xiao-Hui, YUAN Chang-Lai, LIU Fei. B-site Substitution by (Mg1/3Ta2/3)4+ on Structures and Dielectric Properties of New Sr-based (Sr, Nd, Ca)TiO3 Microwave Ceramics [J]. Journal of Inorganic Materials, 2017, 32(3): 293-298. |
[8] | ZHANG Yao, DING Shi-Hua, LIU Yang-Qiong, DUAN Shao-Ying, XIAO Peng, HAN Lin-Cai. Crystal Structure and Microwave Dielectric Property of Ba1-xMgxAl2Si2O8 [J]. Journal of Inorganic Materials, 2017, 32(1): 91-95. |
[9] | SUN Qing-Lei, ZHOU Hong-Qing, QIAN-Lei, WANG Ya-Zhou, ZHU Hai-Kui, YUE Zhen-Xing. Effects of MgO, SrO and La2O3 Co-doping on Structure and Properties of (Zr0.8Sn0.2)TiO4 Ceramics [J]. Journal of Inorganic Materials, 2016, 31(8): 812-818. |
[10] | ZHANG Kang, LI Wei, LIN Hui-Xin. Effect of MgO/ Eu2O3 Co-doping on the Microwave Dielectric Properties of Al2O3 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(9): 984-988. |
[11] | XIE Hui-Dong, LI Fei, CHEN Chao, XI Hai-Hong, SHI Ling. Microwave Dielectric Properties of LaPO4 Ceramics Synthesized by a Hydrothermal Method [J]. Journal of Inorganic Materials, 2015, 30(8): 882-886. |
[12] | XIE Hui-Dong, XI Hai-Hong, LI Fei, CHEN Chao. Microwave Dielectric Properties of BiMg2VO6 Ceramic with Low Sintering Temperature [J]. Journal of Inorganic Materials, 2015, 30(2): 202-206. |
[13] | ZHAO Xue-Tong, REN Lu-Lu, LIAO Rui-Jin, LI Jian-Ying, WANG Fei-Peng. Effect of the Oxidizing Atmosphere on the Microstructure and Dielectric Properties of CaCu3Ti4O12 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(12): 1303-1309. |
[14] | QU Jing-Jing, WEI Xing, JING Ben-Qin, LIU Fei, YUAN Chang-Lai. Microstructure and Microwave Dielectric Property of (1-x)(Sr0.2Nd0.208Ca0.488)TiO3-xNd(Ti0.5Mg0.5)O3 Ceramics with High Quality Factor [J]. Journal of Inorganic Materials, 2015, 30(11): 1213-1217. |
[15] | LI Jian-Ying, HOU Lin-Lin, JIA Ran, GAO Lu, WU Kang-Ning, LI Sheng-Tao. Influences of CuAl2O4 Doping on the Dielectric Properties of CaCu3Ti4O12 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(10): 1056-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||