Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1067-1073.DOI: 10.15541/jim20210034
• RESEARCH ARTICLE • Previous Articles Next Articles
FENG Mingxing(), WANG Bin, XU Pengyu, TU Bingtian, WANG Hao(
)
Received:
2021-01-18
Revised:
2021-03-08
Published:
2021-10-20
Online:
2021-04-05
Contact:
WANG Hao, professor. E-mail: shswangh@whut.edu.cn
About author:
FENG Mingxing(1996-), male, Master candidate. E-mail: 15200227687@163.com
Supported by:
CLC Number:
FENG Mingxing, WANG Bin, XU Pengyu, TU Bingtian, WANG Hao. Predicting Thermomechanical Properties of MgAl2O4 Transparent Ceramic Based on Bond Valence Models[J]. Journal of Inorganic Materials, 2021, 36(10): 1067-1073.
Fig. 1 (a) Bulk modulus and (b) hardness of MgAl2O4 under various temperatures (experimental data obtained from the literature[19])BT and BM denote the bulk modulus of bonds in tetrahedra and octahedra, respectively; B is the bulk modulus of MgAl2O4 crystal; HT and HM represent the hardness of bonds in tetrahedra and octahedra, respectively; H is the hardness of MgAl2O4 crystal
Fig. 4 Comparison of prediction with experimental data (a) of Ghosh, et al[17], (b) Boniecki, et al[18] of the temperature dependent fracture strengths of MgAl2O4
Fig. 6 Temperature dependence of (a) inversion parameter, (b) anion parameter, (c) lattice constant, and (d) averaged bond length for MgAl2O4[12,25,29] RT and RM denote the bond length in tetrahedra and octahedra, respectively (1 Å=0.1 nm)
Fig. 7 Ratio of bond valence to bond length of MgAl2O4 under various temperatures $S _{Ave}^{T}/ R_{T}$ and $ S _{Ave}^{M}/ R_{M}$ represent the ratio of bond valence to bond length in tetrahedra and octahedra, respectively
Sij/(v.u.) | $\frac{\mathrm{d} R}{\mathrm{~d} T} /\left(\times 10^{-7}, \mathrm{~nm} /{ }^{\circ} \mathrm{C}\right)$ | R0 | |
---|---|---|---|
[Mg-O]T | 0.54 | 13 | 1.693 |
[Al-O]T | 0.49 | 16 | 1.651 |
[Mg-O]M | 0.53 | 14 | 1.693 |
[Al-O]M | 0.47 | 17 | 1.651 |
Table 1 Chemical bond properties of MgAl2O4
Sij/(v.u.) | $\frac{\mathrm{d} R}{\mathrm{~d} T} /\left(\times 10^{-7}, \mathrm{~nm} /{ }^{\circ} \mathrm{C}\right)$ | R0 | |
---|---|---|---|
[Mg-O]T | 0.54 | 13 | 1.693 |
[Al-O]T | 0.49 | 16 | 1.651 |
[Mg-O]M | 0.53 | 14 | 1.693 |
[Al-O]M | 0.47 | 17 | 1.651 |
[1] |
LI WEIGUO, YANG FAN, FANG DAINING. The temperature- dependent fracture strength model for ultra-high temperature ceramics. Acta Mechanica Sinica, 2010, 26(2):235-239.
DOI URL |
[2] |
CHENG TIANBAO, LI WEIGUO. The temperature-dependent ideal tensile strength of ZrB2, HfB2, and TiB2. Journal of the American Ceramic Society, 2015, 98(1):190-196.
DOI URL |
[3] |
WANG RUZHUAN, LI WEIGUO, LI DINGYU, et al. A new temperature dependent fracture strength model for the ZrB2-SiC composites. Journal of the European Ceramic Society, 2015, 35(10):2957-2962.
DOI URL |
[4] |
DENG YONG, LI WEIGUO, SHAO JIXING, et al. A novel theoretical model to predict the temperature-dependent fracture strength of ceramic materials. Journal of the European Ceramic Society, 2017, 37(15):5071-5077.
DOI URL |
[5] |
WANG HAOMIN, HUANG ZHANGYI, QI JIANQI, et al. A new methodology to obtain the fracture toughness of YAG transparent ceramics. Journal of Advanced Ceramics, 2019, 8(3):418-426.
DOI URL |
[6] |
ZERR A, RIEDEL R, SEKINE T, et al. Recent advances in new hard high-pressure nitrides. Advanced Materials, 2006, 18(22):2933-2948.
DOI URL |
[7] |
GOLDSTEIN A, KRELL A. Transparent ceramics at 50: progress made and further prospects. Journal of the American Ceramic Society, 2016, 99(10):3173-3197.
DOI URL |
[8] |
BROWN I D. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12):6858-6919.
DOI URL |
[9] |
LIU XIAO, WANG HAO, LAVINA B, et al. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences. Inorganic Chemistry, 2014, 53(12):5986-5992.
DOI URL |
[10] | LIU XIAO, WANG HAO, WANG WEIMIN, et al. Simple method for the hardness estimation of inorganic crystals by the bond valence model. Inorganic Chemistry, 2016, 55(21):11089-11095. |
[11] |
BROWN I D, DABKOWSKI A, MCCLEARY A. Thermal expansion of chemical bonds. Acta Crystallographica Section B: Structural Science, 1997, 53(5):750-761.
DOI URL |
[12] |
REDFERN S A, HARRISON R J, O’NEILL H S C, et al. Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 ℃ from in situ neutron diffraction. American Mineralogist, 1999, 84(3):299-310.
DOI URL |
[13] | MICHAEL B. Handbook of Optics: Volume IV-Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd. New York: McGraw-Hill Education, 2010: 118-120. |
[14] |
SHORNIKOV S. Thermodynamic properties of spinel MgAl2O4: a mass spectrometric study. Russian Journal of Physical Chemistry, 2017, 91(1):287-294.
DOI URL |
[15] |
MECHOLSKY J J, FREIMAM S W, RICE R W. Fracture surface analysis of ceramics. Journal of Materials Science, 1976, 11(7):1310-1319.
DOI URL |
[16] |
STEWART R L, BRADT R C. Fracture of polycrystalline MgAl2O4. Journal of the American Ceramic Society, 1980, 63(11):619-623.
DOI URL |
[17] |
GHOSH A, WHITE K W, JENKINS M G, et al. Fracture-resistance of a transparent magnesium aluminate spinel. Journal of the American Ceramic Society, 1991, 74(7):1624-1630.
DOI URL |
[18] | BONIECKI M, LIBRANT Z, SADOWSKI T, et al. The Thermal Shock Resistance and Mechanical Properties at Elevated Temperature of Transparent Ceramics. in: ÖCHSNER A, DA SILVA L F M, ALTENBACH H. Materials with Complex Behaviour II: Properties, Non-Classical Materials and New Technologies. Berlin, Heidelberg: Springer, 2012: 307-321. |
[19] |
CYNN H, ANDERSON O L, NICOL M. Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure and Applied Geophysics, 1993, 141(2):415-444.
DOI URL |
[20] |
WHITE K W, KELKAR G P. Fracture mechanisms of a coarse- grained, transparent MgAl2O4 at elevated temperatures. Journal of the American Ceramic Society, 1992, 75(12):3440-3444.
DOI URL |
[21] |
BRADT R C. Fracture of single crystal MgAl2O4. Journal of Materials Science, 1980, 15(1):67-72.
DOI URL |
[22] | RICHET P, FIQUET G. High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2. Journal of Geophysical Research Solid Earth, 1991, 96(1):445-456. |
[23] |
LANDA Y A, NAUMOVA I A. Determining the enthalpy and specific heat of magnesia spinels in the range 1400-2200 K. Refractories, 1979, 20(5):335-337.
DOI URL |
[24] |
BONNICKSON K R. High temperature heat contents of aluminates of calcium and magnesium. The Journal of Physical Chemistry, 1955, 59(3):220-221.
DOI URL |
[25] |
CARBONIN S, MARTIGNAGO F, MENEGAZZO G, et al. X-ray single-crystal study of spinels: in situ heating. Physics and Chemistry of Minerals, 2002, 29(8):503-514.
DOI URL |
[26] |
HALLSTEDT B. Thermodynamic assessment of the system MgO-Al2O3. Journal of the American Ceramic Society, 1992, 75(6):1497-1507.
DOI URL |
[27] |
SAKAI M, BRADT R C, KOBAYASHI A S. The toughness of polycrystalline MgAl2O4. Journal of the Ceramic Society of Japan, 1988, 96(5):525-531.
DOI URL |
[28] |
BAUDIN C, MARTINEZ R, PENA P. High-temperature mechanical behavior of stoichiometric magnesium spinel. Journal of the American Ceramic Society, 1995, 78(7):1857-1862.
DOI URL |
[29] |
MAEKAWA H, KATO S, KAWAMURA K, et al. Cation mixing in natural MgAl2O4 spinel: a high-temperature27Al NMR study. American Mineralogist, 1997, 82(11):1125-1132.
DOI URL |
[30] |
REN LU, WANG HAO, TU BINGTIAN, et al. Theoretical study on composition- and pressure-dependent mechanical properties of AlON solid solution. Journal of the American Ceramic Society, 2020, 103(8):4390-4401.
DOI URL |
[1] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. |
[2] | JIN Xihai, DONG Manjiang, KAN Yanmei, LIANG Bo, DONG Shaoming. Fabrication of Transparent AlON by Gel Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2023, 38(2): 193-198. |
[3] | WANG Dewen, WANG Junping, YUAN Houcheng, LIU Zhang, ZHOU Jin, DENG Jiajie, WANG Xin, WU Benhua, ZHANG Jian, WANG Shiwei. Metre-scale Y3Al5O12 (YAG) Transparent Ceramics by Vacuum Reactive Sintering [J]. Journal of Inorganic Materials, 2023, 38(12): 1483-1484. |
[4] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[5] | MU Licheng, YANG Jinping, WANG Junping, ZHAO Jin, LIU Mengwei, WANG Dewen, ZHANG Jian. Preparation of YAG Transparent Ceramics by Epoxy Resin Modified Spontaneous Coagulation Casting [J]. Journal of Inorganic Materials, 2022, 37(9): 941-946. |
[6] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. |
[7] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[8] | JING Yanqiu, LIU Qiang, SU Sha, LI Xiaoying, LIU Ziyu, WANG Jingya, LI Jiang. Fabrication of Highly Transparent Co:MgAl2O4 Ceramic Saturable Absorber for Passive Q-switching in 1.5 μm [J]. Journal of Inorganic Materials, 2021, 36(8): 877-882. |
[9] | ZENG Jianjun, ZHANG Kuibao, CHEN Daimeng, GUO Haiyan, DENG Ting, LIU Kui. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering [J]. Journal of Inorganic Materials, 2021, 36(4): 418-424. |
[10] | LIU Ziyu, TOCI Guido, PIRRI Angela, PATRIZI Barbara, FENG Yagang, CHEN Xiaopu, HU Dianjun, TIAN Feng, WU Lexiang, VANNINI Matteo, LI Jiang. Fabrication and Optical Property of Nd:Lu2O3 Transparent Ceramics for Solid-state Laser Applications [J]. Journal of Inorganic Materials, 2021, 36(2): 210-216. |
[11] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
[12] | ZHANG Jin-Cheng, WANG Hao, XU Peng-Yu, TU Bing-Tian, WANG Wei-Min, FU Zheng-Yi. Preparation of ZnO·2.56Al2O3 Transparent Ceramics by Aqueous Gelcasting and Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2019, 34(10): 1072-1076. |
[13] | GUO Sheng-Qiang, WANG Hao, TU Bing-Tian, WANG Bin, XU Peng-Yu, WANG Wei-Min, FU Zheng-Yi. Fabrication and Property of Fine-grained MgO·1.44Al2O3 Spinel Transparent Ceramic [J]. Journal of Inorganic Materials, 2019, 34(10): 1067-1071. |
[14] | ZHANG Zhou, WANG Hao, TU Bing-Tian, XU Peng-Yu, WANG Wei-Min, FU Zheng-Yi. Characterization and Evaluation on Mechanical Property of Mg0.27Al2.58O3.73N0.27 Transparent Ceramic [J]. Journal of Inorganic Materials, 2018, 33(9): 1006-1010. |
[15] | LI Jiang, DAI Jia-Wei, PAN Yu-Bai. Research Progress on Magneto-optical Transparent Ceramics [J]. Journal of Inorganic Materials, 2018, 33(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||