Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (1): 72-78.DOI: 10.15541/jim20180207
Special Issue: MAX相和MXene材料; 钙钛矿材料; 二维材料
• RESEARCH PAPER • Previous Articles Next Articles
DONG Yu-Hui, ZENG Shu-Yu, HAN Bo-Ning, XUE Jie, SONG Ji-Zhong, ZENG Hai-Bo
Received:
2018-05-02
Revised:
2018-07-24
Published:
2019-01-21
Online:
2018-12-17
About author:
DONG Yu-Hui. E-mail: dong.yuhui@njust.edu.cn
CLC Number:
DONG Yu-Hui, ZENG Shu-Yu, HAN Bo-Ning, XUE Jie, SONG Ji-Zhong, ZENG Hai-Bo. BN/CsPbX3 Composite Nanocrystals: Synthesis and Applications in White LED[J]. Journal of Inorganic Materials, 2019, 34(1): 72-78.
Fig. 1 Scheme of the all-solid-state ball milling procedure for synthesis of CsPbX3 NCs (a) and optical image of large-scale red emission powder under UV light excitation (365 nm) (b)
Fig. 2 (a) PL emission spectra of CsPbX3 NCs powder, the corresponding optical images under normal daylight and UV light (black background) were exhibited inside; (b) Color gamut spectra of perovskite NCs (the inner black line indicating NTSC)
Fig. 4 The air stability of CsPbI3 NCs powder (a) The PL stability exposed in air; (b) X-ray diffraction (XRD) pattern of CsPbI3 NCs powder; (c) Photographs of the powder samples with time changing under the sunlight (left) and UV light (right)
Fig. 5 Analysis of air stability of CsPbI3 NCs (a) Stability test of CsPbI3 NCs powder with different BN quantity; (b) SEM image of CsPbI3 NCs; (c) Energy dispersive spectroscopy (EDS) mapping images of (b)
Fig. 6 Proof-of-concept demonstration of white LED by blending green and red Pe-NCs on a commercial blue LED chip (a) Schematically depicts the packing method of white LED; (b) EL spectra of three typical devices exhibiting (1) green-white, (2) white, and (3) red-white; (c) Photographs of the white LED under different operating voltage
Fig. 7 The stability of white-light LED (a) The luminance stability of white-light LED placed in the air measured at the voltage of 2.7 V; (b) The working stability of the white-light LED after continuous operating for 2 h
CsPbX3 | Emission peak/nm | FWHM/nm | CsPbX3 | Emission peak/nm | FWHM/nm |
---|---|---|---|---|---|
CsPbCl3 | 417 | 23 | CsPbIBr2 | 551 | 41 |
CsPbCl2.14Br0.86 | 430 | 23 | CsPbI2Br | 605 | 47 |
CsPbCl2Br | 447 | 27 | CsPbI2.14Br0.86 | 642 | 46 |
CsPbClBr2 | 483 | 38 | CsPbI3 | 680 | 40 |
CsPbBr3 | 532 | 33 |
Table s1 Comprehensive comparisons for the representative perovskite NCs
CsPbX3 | Emission peak/nm | FWHM/nm | CsPbX3 | Emission peak/nm | FWHM/nm |
---|---|---|---|---|---|
CsPbCl3 | 417 | 23 | CsPbIBr2 | 551 | 41 |
CsPbCl2.14Br0.86 | 430 | 23 | CsPbI2Br | 605 | 47 |
CsPbCl2Br | 447 | 27 | CsPbI2.14Br0.86 | 642 | 46 |
CsPbClBr2 | 483 | 38 | CsPbI3 | 680 | 40 |
CsPbBr3 | 532 | 33 |
Sample | Synthetic methods | FWHM/nm | Color/nm | Ref. |
---|---|---|---|---|
CsPbX3(X=Cl, Br, I) | All-solid-state ball milling | 23-47 | 417-680 | This work |
CsPbX3(X=Cl, Br, I) | Supersaturated recrystallization | 12-39 | 400-650 | [1] |
CsPbX3(CsPb(Br/Cl)3 -CsPbI3) | Droplet-based microfluidic platform | 20-45 | 470-690 | [2] |
CsPbX3(X=Cl, Br, I) | Fast Anion-Exchange | 12-40 | 410-700 | [3] |
Table s2 Comparison of FWHM of CsPbX3 with typical solution synthesis
Sample | Synthetic methods | FWHM/nm | Color/nm | Ref. |
---|---|---|---|---|
CsPbX3(X=Cl, Br, I) | All-solid-state ball milling | 23-47 | 417-680 | This work |
CsPbX3(X=Cl, Br, I) | Supersaturated recrystallization | 12-39 | 400-650 | [1] |
CsPbX3(CsPb(Br/Cl)3 -CsPbI3) | Droplet-based microfluidic platform | 20-45 | 470-690 | [2] |
CsPbX3(X=Cl, Br, I) | Fast Anion-Exchange | 12-40 | 410-700 | [3] |
[1] | LI X M, WU Y, ZHANG S L, et al.CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2435-2445. |
[2] | LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13(9): 1603996-1-24. |
[3] | LI X M, YU D J, CAO F, et al.Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Advanced Functional Materials, 2016, 26(32): 5903-5912. |
[4] | YAO E P, YANG Z, MENG L, et al. High-brightness blue and white leds based on inorganic perovskite nanocrystals and their composites. Advanced Materials, 2017, 29(23): 1606859-1-7. |
[5] | SONG J Z, LI J H, LI X M, et al.Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162-7167. |
[6] | LI J H, XU L M, WANG T, et al. 50-fold eqe improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885-1-9. |
[7] | JIANG W L, ZHOU W, YING J F, et al.Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers. Journal of Inorganic Materials, 2017, 32(1): 96-100. |
[8] | YANG Y, GAO J, CUI J R, et al.Research progress of perovskite solar cells. Journal of Inorganic Materials, 2015, 30(11): 1131-1138. |
[9] | DONG Y H, GU Y, ZOU Y S, et al.Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622-5632. |
[10] | SONG J Z, XU L M, LI J H, et al.Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Advanced Materials, 2016, 28(24): 4861-4869. |
[11] | WANG Y, LI X M, SONG J Z, et al.All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Advanced Materials, 2015, 27(44): 7101-7108. |
[12] | LI X M, WANG Y, SUN H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Advanced Materials, 2017, 29(36): 1701185-1-9. |
[13] | RAJA S N, BEKENSTEIN Y, KOC M A, et al.Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces, 2016, 8(51): 35523-35533. |
[14] | LI Z, KONG L, HUANG S, et al.Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/ alumina monolith. Angewandte Chemie International Edition, 2017, 129(28): 8246-8250. |
[15] | KOJIMA A, IKEGAMI M, TESHIMA K, et al.Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chemistry Letters, 2012, 41(4): 397-399. |
[16] | AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 2015, 137(32): 10276-10281. |
[17] | LIGNOS I, STAVRAKIS S, NEDELCU G, et al.Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869-1877. |
[18] | ZHU Z Y, YANG Q Q, GAO L F, et al.Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. Journal of Physical Chemistry Letters, 2017, 8(7): 1610-1614. |
[19] | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692-3696. |
[20] | NEDELCU G, PROTESESCU L, YAKUNIN S, et al.Fast anion- exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 2015, 15(8): 5635-5640. |
[21] | JODLOWSKI AD, YEPEZ A, LUQUE R, et al.Benign-by-design solventless mechanochemical synthesis of three-, two-, and one-dimensional hybrid perovskites. Angewandte Chemie International Edition, 2017, 55(48): 14972-14977. |
[22] | MANUKYAN K V, YEGHISHYAN A V, MOSKOVSKIKH D O, et al.Mechanochemical synthesis of methylammonium lead iodide perovskite. Journal of Materials Science, 2016, 51(19): 9123-9130. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[5] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[6] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[7] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[8] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[9] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[10] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[11] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[12] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[13] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[14] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[15] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||