Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (3): 257-263.DOI: 10.3724/SP.J.1077.2014.13322
• Orginal Article • Previous Articles Next Articles
NIE Wen-Bo, XIAO Qi-Chang, WANG Jing-Liang, LEI Gang-Tie, XIAO Qi-Zhen, LI Zhao-Hui
Received:
2013-06-28
Revised:
2013-08-01
Published:
2014-03-20
Online:
2014-02-18
About author:
NIE Wen-Bo. E-mail: 363478547@qq.com
CLC Number:
NIE Wen-Bo, XIAO Qi-Chang, WANG Jing-Liang, LEI Gang-Tie, XIAO Qi-Zhen, LI Zhao-Hui. Preparation of Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 Core-shell Composite and Its Electrochemical Properties[J]. Journal of Inorganic Materials, 2014, 29(3): 257-263.
Add to citation manager EndNote|Ris|BibTeX
Fig. 4 XPS spectra of V2p2/3 in the Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 core-shell composite (LMS3) before (a) and after (b) charged to 4.8 V in the first cycle, and their XRD patterns
Mass fraction of the V2O5 in the composite/% | Initial charge capacity/(mAh·g-1) | Initial discharge capacity/(mAh·g-1) | Irreversible capacity/(mAh·g-1) | Coulombic efficiency/% |
---|---|---|---|---|
0 | 354 | 259 | 95 | 73 |
5 | 339 | 266 | 73 | 78 |
10 | 323 | 272 | 51 | 84 |
15 | 292 | 276 | 16 | 94 |
20 | 278 | 279 | -1 | 100 |
Table 1 First discharge/charge parameters of the Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 core-shell composites in the first cycle
Mass fraction of the V2O5 in the composite/% | Initial charge capacity/(mAh·g-1) | Initial discharge capacity/(mAh·g-1) | Irreversible capacity/(mAh·g-1) | Coulombic efficiency/% |
---|---|---|---|---|
0 | 354 | 259 | 95 | 73 |
5 | 339 | 266 | 73 | 78 |
10 | 323 | 272 | 51 | 84 |
15 | 292 | 276 | 16 | 94 |
20 | 278 | 279 | -1 | 100 |
Sample | Rs / Ω | Rct / Ω | ||
---|---|---|---|---|
Before cycle | After 20 cycles | Before cycle | After 20 cycles | |
LMS0 | 3.94 | 4.02 | 21.6 | 133.0 |
LMS3 | 4.06 | 4.08 | 40.7 | 55.7 |
Table 2 Impedance parameters of the equipment circuit
Sample | Rs / Ω | Rct / Ω | ||
---|---|---|---|---|
Before cycle | After 20 cycles | Before cycle | After 20 cycles | |
LMS0 | 3.94 | 4.02 | 21.6 | 133.0 |
LMS3 | 4.06 | 4.08 | 40.7 | 55.7 |
[1] | ZHANG JIAN-BO, LIANG FAN, GAO XUE-PING, et al. Advance of lithium ion batteries: The 16th international meeting on lithium batteries. Scientia Sinica Chimica, 2012, 42(8): 1252-1262. |
[2] | ZHANG QIAN, LIU WEI-WEI, FANG GUO-QING, et al. Structural and electrochemical performances of Li1+2xMn0.3+xNi0.3-3xCr0.4O2 synthesized by spray-dry method. Journal of Inorganic Materials, 2013, 28(06): 616-622. |
[3] | WANG ZHAO, WU FENG, SU YUE-FENG, et al. Preparation and characterization of xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for lithium-ion batteries. Acta Physico-Chimica Sinica, 2012, 28(4): 823-830. |
[4] | THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem., 2007, 17(30): 3112-3125. |
[5] | WU CHENG-REN, ZHAO CHANG-CHUN, WANG ZHAO- XIANG, et al. Li-rich layer-structured cathode materials for Li-ion batteries. Progress in Chemistry, 2011, 23(10): 2038-2044. |
[6] | DU KE, HU GUO-RONG. Review of manganese-based solid solution xLi[Li1/3Mn2/3]O2·(1-x)LiMO2. Chinese Science Bulletin, 2012, 57(10): 794-804. |
[7] | ZHAO Y J, ZHAO C S, FENG H L, et al. Enhanced electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 modified by manganese oxide coating for lithium-ion batteries. Electrochem. Solid-State Lett., 2011, 14(1): A1-A5. |
[8] | SHI S J, TU J P, TANG Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim. Acta, 2013, 88: 671-679. |
[9] | ROSINA K J, JIANG M, ZENG D L, et al. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J. Mater. Chem., 2012, 22(38): 20602-20610. |
[10] | WU C R, FANG X P, GUO X W, et al. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J. Power Sources, 2013, 231: 44-49. |
[11] | WU F, LI N, SU Y F, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?. J. Mater. Chem., 2012, 22(4): 1489-1497. |
[12] | WANG Z Y, LIU E Z, HE C N, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J. Power Sources, 2013, 236: 25-32. |
[13] | MARTHA S K, NANDA J, KIM Y, et al. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J. Mater. Chem. A, 2013, 1(18): 5587-5595. |
[14] | LIU Y J, LIU S B, WANG Y P, et al. Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode. J. Power Sources, 2013, 222: 455-460. |
[15] | ZHANG H Z, QIAO Q Q, LI G R, et al. Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J. Mater. Chem., 2012, 22(26): 13104-13109. |
[16] | ZHENG J, DENG S N, SHI Z C, et al. The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J. Power Sources, 2013, 221: 108-113. |
[17] | HUANG XIA, YANG FEI, HU GUO-RONG, et al. Modification of Li[Li0.2Ni0.2Mn0.6]O2 as cathode material for rechargeable lithium batteries by acid-leaching. Chinese Journal of Inorganic Chemistry, 2012, 28(5): 983-988. |
[18] | SONG B H, LAI M O, LU L. Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim. Acta, 2012, 80: 187-195. |
[19] | GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem. Commun., 2009, 11(1): 84-86. |
[20] | LEE E S, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13] O2-VO2(B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries. J. the Electrochem. Soc., 2011, 158(1): A47-A50. |
[21] | GAO J, KIM J, MANTHIRAM A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J. Power Sources, 2009, 191(2): 644-647. |
[22] | WANG J L, XIAO Q C, YU J J, et al. Layered lithium-rich Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials prepared by different methods and its electrochemical properties. Scientific Journal of Frontier Chemical Development, 2012, 2(4): 81-88. |
[23] | YU J J, YANG J, NIE W B, et al. A porous vanadium pentoxide nanomaterial as cathode material for rechargeable lithium batteries. Electrochim. Acta, 2013, 89: 292-299. |
[24] | JOHNSON C S, LI N, LEFIEF C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x) LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7). Chem. Mater., 2008, 20(19): 6095-6106. |
[25] | ALAMARGUY D, CASTLE J E, LIBERATORE M, et al. Distribution of intercalated lithium in V2O5 thin films determined by SIMS depth profiling. Surf. Interface Anal., 2006, 38: 847-850. |
[26] | EGUCHI M, OZAWA K, SAKKA Y. Preparation and lithium insertion property of layered LixV2O5·nH2O. J. Power Sources, 2003, 119-121: 201-204. |
[27] | SEMENENKO D A, ITKIS D M, POMERANTSEVA E A, et al. LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochem. Commun., 2010, 12(9): 1154-1157. |
[28] | ROZIER P, SAVARIAULT J M, GALY J. A new interpretation of the LixV2O5 electrochemical behaviour for 1<x<3. Solid State Ionics, 1997, 98(3/4): 133-144. |
[29] | XIONG X H, WANG Z X, GUO H J, et al. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60℃. J. Mater. Chem. A, 2013, 1: 1284-1288. |
[30] | Liu J, Wang Q Y, Reeja-Jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem. Commun., 2010, 12(6): 750-753. |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[3] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[4] | YUE Quanxin, GUO Ruihua, WANG Ruifen, AN Shengli, ZHANG Guofang, GUAN Lili. 3D Core-shell Structured NiMoO4@CoFe-LDH Nanorods: Performance of Efficient Oxygen Evolution Reaction and Overall Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1254-1264. |
[5] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[6] | WU Rui, ZHANG Minhui, JIN Chenyun, LIN Jian, WANG Deping. Photothermal Core-Shell TiN@Borosilicate Bioglass Nanoparticles: Degradation and Mineralization [J]. Journal of Inorganic Materials, 2023, 38(6): 708-716. |
[7] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[8] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[9] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[10] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[11] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[12] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[13] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[14] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[15] | CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 65-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||