Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (5): 529-535.DOI: 10.3724/SP.J.1077.2012.00529
• Orginal Article • Previous Articles Next Articles
WANG Cui-Feng1, CHIOU Shi-Yung2, OU Keng-Liang3, CAI Zhang-Ting2
Received:
2011-06-13
Revised:
2011-09-07
Published:
2012-05-10
Online:
2012-03-31
CLC Number:
WANG Cui-Feng, CHIOU Shi-Yung, OU Keng-Liang, CAI Zhang-Ting. Optimal Process Parameters for 3Y-TZP/TiN Conductive Polycrystal by Taguchi Method[J]. Journal of Inorganic Materials, 2012, 27(5): 529-535.
Add to citation manager EndNote|Ris|BibTeX
Experiment | Sintering type | TiN crushing time/h | Duration time for the first step/h | Sinter temperature for the second step/℃ |
---|---|---|---|---|
Exp.1 | Conventional sintering(no duration time for the second step) | 4 | 2 | - |
Exp.2 | Conventional sintering(no duration time for the second step) | 8 | 1 | - |
Exp.3 | Conventional sintering(no duration time for the second step) | 12 | 0 | - |
Exp.4 | Two steps sintering(10 h duration time for the second step) | 4 | 1 | 1050 |
Exp.5 | Two steps sintering(10 h duration time for the second step) | 8 | 0 | 1250 |
Exp.6 | Two steps sintering(10 h duration time for the second step) | 12 | 2 | 1150 |
Exp.7 | Two steps sintering(20 h duration time for the second step) | 4 | 0 | 1150 |
Exp.8 | Two steps sintering(20 h duration time for the second step) | 8 | 2 | 1050 |
Exp.9 | Two steps sintering(20 h duration time for the second step) | 12 | 1 | 1250 |
Table 1 Experimental program of Taguchi methods, L9
Experiment | Sintering type | TiN crushing time/h | Duration time for the first step/h | Sinter temperature for the second step/℃ |
---|---|---|---|---|
Exp.1 | Conventional sintering(no duration time for the second step) | 4 | 2 | - |
Exp.2 | Conventional sintering(no duration time for the second step) | 8 | 1 | - |
Exp.3 | Conventional sintering(no duration time for the second step) | 12 | 0 | - |
Exp.4 | Two steps sintering(10 h duration time for the second step) | 4 | 1 | 1050 |
Exp.5 | Two steps sintering(10 h duration time for the second step) | 8 | 0 | 1250 |
Exp.6 | Two steps sintering(10 h duration time for the second step) | 12 | 2 | 1150 |
Exp.7 | Two steps sintering(20 h duration time for the second step) | 4 | 0 | 1150 |
Exp.8 | Two steps sintering(20 h duration time for the second step) | 8 | 2 | 1050 |
Exp.9 | Two steps sintering(20 h duration time for the second step) | 12 | 1 | 1250 |
Crushing time | Particle size /% | Particle size /percentage | Particle size /percentage | Particle size /percentage |
---|---|---|---|---|
4 h | 0.303 /40% | 0.991/24% | 3.535/36% | - |
8 h | 0.293/45% | 1.002 /21% | 3.043/12% | 9.837/22% |
12 h | 0.264 /53% | 0.954/16% | 5.588/31% | - |
Table 2 Particle sizes and distribution of TiN powder after crushing (μm)
Crushing time | Particle size /% | Particle size /percentage | Particle size /percentage | Particle size /percentage |
---|---|---|---|---|
4 h | 0.303 /40% | 0.991/24% | 3.535/36% | - |
8 h | 0.293/45% | 1.002 /21% | 3.043/12% | 9.837/22% |
12 h | 0.264 /53% | 0.954/16% | 5.588/31% | - |
Experiment | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) |
---|---|---|
Exp.1 | 602.437 | 4.055 |
Exp.2 | 648.402 | 5.215 |
Exp.3 | 574.059 | 6.340 |
Exp.4 | 738.188 | 5.180 |
Exp.5 | 732.302 | 9.275 |
Exp.6 | 739.225 | 4.800 |
Exp.7 | 742.437 | 7.545 |
Exp.8 | 749.450 | 5.765 |
Exp.9 | 790.125 | 6.415 |
Table 3 Measured average values of flexural strength and fracture toughness
Experiment | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) |
---|---|---|
Exp.1 | 602.437 | 4.055 |
Exp.2 | 648.402 | 5.215 |
Exp.3 | 574.059 | 6.340 |
Exp.4 | 738.188 | 5.180 |
Exp.5 | 732.302 | 9.275 |
Exp.6 | 739.225 | 4.800 |
Exp.7 | 742.437 | 7.545 |
Exp.8 | 749.450 | 5.765 |
Exp.9 | 790.125 | 6.415 |
Factor | SS | DOF | Var | Contribution |
---|---|---|---|---|
A | 21.864 | 2 | 10.932 | 0.211 |
B | 14.796 | 2 | 7.398 | 0.143 |
C | 57.695 | 2 | 28.847 | 0.556 |
D | 9.387 | 2 | 4.693 | 0.090 |
Total | 103.742 | 8 | 12.968 | 1.000 |
Table 4 Parameter analysis of S/N ratio for fracture toughness
Factor | SS | DOF | Var | Contribution |
---|---|---|---|---|
A | 21.864 | 2 | 10.932 | 0.211 |
B | 14.796 | 2 | 7.398 | 0.143 |
C | 57.695 | 2 | 28.847 | 0.556 |
D | 9.387 | 2 | 4.693 | 0.090 |
Total | 103.742 | 8 | 12.968 | 1.000 |
A | B | C | D | |
---|---|---|---|---|
Lev1 | 14.240 | 14.748 | 13.725 | 15.945 |
Lev2 | 15.803 | 16.309 | 14.956 | 15.190 |
Lev3 | 16.361 | 15.347 | 17.724 | 15.274 |
Table 5 Factor response to S/N ratio of fracture toughness(db)
A | B | C | D | |
---|---|---|---|---|
Lev1 | 14.240 | 14.748 | 13.725 | 15.945 |
Lev2 | 15.803 | 16.309 | 14.956 | 15.190 |
Lev3 | 16.361 | 15.347 | 17.724 | 15.274 |
Factor | SS | DOF | Var | Contribution |
---|---|---|---|---|
A | 13.501 | 2 | 6.750 | 0.873 |
B | 0.319 | 2 | 0.160 | 0.021 |
C | 1.117 | 2 | 0.559 | 0.072 |
D | 0.528 | 2 | 0.264 | 0.034 |
Total | 15.465 | 8 | 1.933 | 1.000 |
Table 6 Parameter analysis of S/N ratio for flexural strength
Factor | SS | DOF | Var | Contribution |
---|---|---|---|---|
A | 13.501 | 2 | 6.750 | 0.873 |
B | 0.319 | 2 | 0.160 | 0.021 |
C | 1.117 | 2 | 0.559 | 0.072 |
D | 0.528 | 2 | 0.264 | 0.034 |
Total | 15.465 | 8 | 1.933 | 1.000 |
A | B | C | D | |
---|---|---|---|---|
Lev1 | 55.669 | 56.788 | 56.820 | 56.945 |
Lev2 | 57.340 | 57.005 | 57.181 | 57.005 |
Lev3 | 57.618 | 56.833 | 56.625 | 56.677 |
Table 7 Factor response to S/N ratio of flexural strength
A | B | C | D | |
---|---|---|---|---|
Lev1 | 55.669 | 56.788 | 56.820 | 56.945 |
Lev2 | 57.340 | 57.005 | 57.181 | 57.005 |
Lev3 | 57.618 | 56.833 | 56.625 | 56.677 |
Verified measured average value | Verified S/N ratio | Predicted S/N ratio | |
---|---|---|---|
Flexural strength | 736.75 MPa | 57.343 db | 57.341 db |
Fracture toughness | 7.545 MPa·m1/2 | 17.618 db | 17.261 db |
Table 8 Comparison between verified and predicted S/N ratio for optimal process parameters of A3B2C3D2
Verified measured average value | Verified S/N ratio | Predicted S/N ratio | |
---|---|---|---|
Flexural strength | 736.75 MPa | 57.343 db | 57.341 db |
Fracture toughness | 7.545 MPa·m1/2 | 17.618 db | 17.261 db |
Experiment | t-ZrO2 /vol% | m-ZrO2 /vol% | Relative densities/% |
---|---|---|---|
Exp.1 | 92.8 | 7.2 | 90.12 |
Exp.2 | 94.2 | 5.8 | 88.87 |
Exp.3 | 95.2 | 4.8 | 87.36 |
Exp.4 | 94.1 | 5.9 | 90.88 |
Exp.5 | 97.3 | 2.7 | 94.37 |
Exp.6 | 93.5 | 6.5 | 96.88 |
Exp.7 | 96.1 | 3.9 | 93.57 |
Exp.8 | 94.8 | 5.2 | 95.38 |
Exp.9 | 95.4 | 4.6 | 97.22 |
Table 9 Volume ratios and relative densities of t-ZrO2 and m-ZrO2 sintering at different conditions
Experiment | t-ZrO2 /vol% | m-ZrO2 /vol% | Relative densities/% |
---|---|---|---|
Exp.1 | 92.8 | 7.2 | 90.12 |
Exp.2 | 94.2 | 5.8 | 88.87 |
Exp.3 | 95.2 | 4.8 | 87.36 |
Exp.4 | 94.1 | 5.9 | 90.88 |
Exp.5 | 97.3 | 2.7 | 94.37 |
Exp.6 | 93.5 | 6.5 | 96.88 |
Exp.7 | 96.1 | 3.9 | 93.57 |
Exp.8 | 94.8 | 5.2 | 95.38 |
Exp.9 | 95.4 | 4.6 | 97.22 |
[1] | Shi J L, Li B S, Lu Z L, et al. Correlation between microstructure, phase transformation during fracture and the mechanical properties of Y-TZP Ceramics. Journal of the European Ceramic Society, 1996, 16(7): 795-798. |
[2] | Jansen S R, Winnubst A J A, He Y J, et al. Effects of grain size and ceria addition on ageing behaviour and tribological properties of Y-TZP ceramics. Journal of the European Ceramic Society, 1998, 18(5): 557-563. |
[3] | Tseng Wenjea J, Taniguchi Masahiko, Yamada Toshiyuki. Transformation strengthening of as-fired zirconia ceramics. Ceramics International, 1999, 25: 545-550. |
[4] | Vanmeensel K, Laptev A, Van der Biest O, et al. The influence of percolation during pulsed electric current sintering of ZrO2–TiN powder compacts with varying TiN content. Acta Materialia, 2007, 55(5):1801–1811. |
[5] | Bonny K, De Baets P, Vleugels J, et al. Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites. Journal of Materials Processing Technology, 2008, 208(1/2/3): 423-430. |
[6] | Lauwers B, Brans K, Liu W, et al. Influence of the type and grain size of the electro-conductive phase on the Wire-EDM performance of ZrO2 ceramic composites. CIRP Annals - Manufacturing Technology, 2008, 57(1): 191-194. |
[7] | 王光国. 氮化钛对钇安定化氧化锆性能与组织之影响. 台湾高雄: 国立高雄应用科技大学硕士论文, 2005. |
[8] | Puertas I, Luis C J. A study on the electrical discharge machining of conductive ceramics. Journal of Materials Processing Technology, 2004, 153–154:1033-1038. |
[9] | Perez Delgado Y, Bonny K, De Baets P, et al. Impact of wire-EDM on dry sliding friction and wear of WC-based and ZrO2-based composites. Wear, 2011, 271(9/10):1951-1961. |
[10] | Lauwers B, Kruth J P, Liu W, et al. Investigation of material removal mechanisms in EDM of composite ceramic materials. Journal of Materials ProcessingTechnology, 2004, 149(1/2/3): 347-352. |
[11] | Alfonso Bravo-Leon, Yuichiro Morikawa, Masanori Kawahara, et al. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Materialia, 2002, 50(18): 4555-4562. |
[12] | Shibata Kenro, Sato Rikiya, Yoshinaka Masaru, et al. Electrical and mechanical properties of ZrO2(2Y)/TiN composites and laminates made from these materials. Journal of Materials Science, 1997, 32(3): 583-587. |
[13] | Ran Songlin, Gao Lian. Mechanical properties and microstructure of TiN/TZP nanocomposites. Materials Science and Engineering A, 2007, 447(1/2): 83-86. |
[14] | Jef Vleugels, Omer Van der Biest. Development and characterization of Y2O3-Stabilized ZrO2 (Y-TZP) Composites with TiB2, TiN, TiC, and TiC0.5N0.5. Journal of the American Ceramic Society, 1999, 82(10): 2717-2720. |
[15] | Bonny K, De Baets P, Ost W, et al. Influence of secondary phases on the tribological response of electro-discharge machined zirconia- based composites against WC-Co cemented carbide. Wear, 2009, 267(12): 2157-2166. |
[16] | Lopez-Esteban S, Gutierrez-Gonzalez C F, Mata-Osoro G, et al. Electrical discharge machining of ceramic/semiconductor/metal nanocomposites. Scripta Materialia, 2010, 63(2): 219-222. |
[1] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[2] | WANG Xueyao, WANG Wugang, LI Yingwei, PENG Qi, LIANG Ruihong. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics [J]. Journal of Inorganic Materials, 2023, 38(7): 839-844. |
[3] | LI Haiyan, KUANG Fenghua, WU Haolong, LIU Xiaogen, BAO Yiwang, WAN Detian. Temperature Dependence of Residual Tensile Stresses and Its Influences on Crack Propagation Behaviour [J]. Journal of Inorganic Materials, 2023, 38(11): 1265-1270. |
[4] | LI Haiyan, HAO Hongjian, TIAN Yuan, WANG Changan, BAO Yiwang, WAN Detian. Effects of Residual Stresses on Strength and Crack Resistance in ZrO2 Ceramics with Alumina Coating [J]. Journal of Inorganic Materials, 2022, 37(4): 467-472. |
[5] | LI Meng, HUANG Hailu, WU Jiamin, LIU Chunlei, WU Yaru, ZHANG Jingxian, SHI Yusheng. Effect of Solid Loading of Slurry on Properties of Si3N4 Ceramics Formed by Digital Light Processing [J]. Journal of Inorganic Materials, 2022, 37(3): 310-316. |
[6] | HAO Hongjian, LI Haiyan, WAN Detian, BAO Yiwang, LI Yueming. Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating [J]. Journal of Inorganic Materials, 2022, 37(12): 1295-1301. |
[7] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[8] | MA Delong, BAO Yiwang, WAN Detian, QIU Yan, ZHENG Dezhi, FU Shuai. Pre-crack and Fracture Toughness Evaluation of Ceramic Thin Plates [J]. Journal of Inorganic Materials, 2021, 36(7): 733-737. |
[9] | LIANG Hanqin, YIN Jinwei, ZUO Kaihui, XIA Yongfeng, YAO Dongxu, ZENG Yuping. Mechanical and Dielectric Properties of Hot-pressed Si3N4 Ceramics with BaTiO3 Addition [J]. Journal of Inorganic Materials, 2021, 36(5): 535-540. |
[10] | ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359. |
[11] | XING Yuan-Yuan, WU Hai-Bo, LIU Xue-Jian, HUANG Zheng-Ren. Grain Composition on Solid-state-sintered SiC Ceramics [J]. Journal of Inorganic Materials, 2018, 33(11): 1167-1172. |
[12] | MA Rong-Bin, CHENG Xu-Dong, ZOU Jun, LI Qing-Yu, HUANG Xia. Toughness and Thermal Shock of SiC Fiber/Yttria-stabilized-zirconia Composite Thick Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2016, 31(2): 190-194. |
[13] | LEI Zhuo-Yan, WANG Zhi, FAN Heng-Bing, MA Wen-Bin, CHEN Jian, WANG Xu. Effect of B2O3 Doping and Phosphate Impregnation on Oxidation Resistance and Mechanical Properties of Mesocarbon Microbead Composites [J]. Journal of Inorganic Materials, 2015, 30(7): 769-773. |
[14] | LIANG Ling-Jiang, LI Kai, YAN Dong, MA Ben, YANG Jia-Jun, PU Jian, CHI Bo, LI Jian. Mechanical Property and Deformation Behavior of SOFCs [J]. Journal of Inorganic Materials, 2015, 30(6): 633-638. |
[15] | HU Hai-Long, ZENG Yu-Ping, ZUO Kai-Hui, XIA Yong-Feng, YAO Dong-Xu. Effect of Sintering Additive Composition on the Mechanical and Tribological Properties of Si3N4/SiC Ceramics [J]. Journal of Inorganic Materials, 2014, 29(8): 885-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||