Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (2): 219-224.DOI: 10.3724/SP.J.1077.2011.11557
• Orginal Article • Previous Articles
LI Fang, ZHU Ying-Chun
Received:
2011-09-06
Published:
2012-02-10
Online:
2012-01-05
About author:
LI Fang(1985-), female, candidate of PhD. E-mail: lidingyan@126.com
Supported by:
CLC Number:
LI Fang, ZHU Ying-Chun. Synthesis and Electrochemical Properties of Porous SnO2 Agglomerates[J]. Journal of Inorganic Materials, 2012, 27(2): 219-224.
Add to citation manager EndNote|Ris|BibTeX
Porous SnO2 | BET area /(m2∙g-1) | Average pore size/nm | Pore volume/ (cm3∙g-1) |
---|---|---|---|
300℃ | 146.1 | 6.86 | 0.304 |
350℃ | 67.6 | 4.87 | 0.209 |
400℃ | 59.6 | 2.37 | 0.182 |
Table 1 Structural properties of the as-produced samples
Porous SnO2 | BET area /(m2∙g-1) | Average pore size/nm | Pore volume/ (cm3∙g-1) |
---|---|---|---|
300℃ | 146.1 | 6.86 | 0.304 |
350℃ | 67.6 | 4.87 | 0.209 |
400℃ | 59.6 | 2.37 | 0.182 |
Fig. 5 Comparison of (a) the first charge and discharge curves and the cycling performance of porous SnO2 synthesized at different temperatures (b) 300℃, (c) 350℃, (d) 400℃
[1] | Bullis K. Building batteries for electric cars. Technol. Rev., 2011, 114: 80-82. |
[2] | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22(3): 587-603. |
[3] | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367. |
[4] | Wang T, Ma Z N, Xu F, et al. The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials. Electrochem. Commun., 2003, 5(7): 599-602. |
[5] | Idota Y, Mineo Y, Matsufuji A, et al. Promising anode active materials for the coming lithium secondary batteries. 3. Tin based oxide as the negative electrode material of the lithium. Denki Kagaku, 1997, 65: 717-722. |
[6] | Ng S H, Santos dos D I, Chew S Y, et al. Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage,Electrochem. Commun., 2007, 9(5): 915-919. |
[7] | Kim E, Son D, Kim T G, et al. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. Angew. Chem. Int. Edit., 2004, 43(44): 5987-5990. |
[8] | Ulagappan N, Rao C N R. Synthesis and characterization of the mesoporous chromium silicates, Cr-MCM-41. Chem. Commun., 1996(9): 1047-1048. |
[9] | Qi L M, Ma J M, Cheng H M, et al. Synthesis and characterization of mesostructured tin oxide with crystalline walls. Langmuir, 1998, 14(9): 2579-2581. |
[10] | Wang Y D, Ma C L, Sun X D, et al. Synthesis of mesostructured SnO2 with CTAB and hydrous tin chloride. Mater. Lett., 2001, 51(4): 285-288. |
[11] | Severin K G, Abdel-Fattah T M, Pinnavaia T J. Supramolecular assembly of mesostructured tin oxide. Chem. Commun., 1998(13): 1471-1472. |
[12] | Yang P D, Zhao D Y, Margolese D I, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater., 1999, 11(10): 2813-2826. |
[13] | Scott R W J, Mamak M, Kwong K, et al. Making sense out of sulfated tin dioxide mesostructures. J. Mater. Chem., 2003, 13(6): 1406-1412. |
[14] | Wu N L, Tung C Y. Evolution in microstructural properties of cetyltrimethylammonium bromide-templated mesoporous tin oxide upon thermal crystallization. J. Am. Ceram. Soc., 2004, 87(9): 1741-1746. |
[15] | Han S H, Che H W, Hou W G, et al. Ordered mesoporous tin oxide with crystalline pore walls: preparation and thermal stability. Micropor. Mesopor. Mat., 2010, 130(1/2/3): 1-6. |
[16] | Stucky G D, Yang P D, Zhao D Y, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater., 1999, 11(10): 2813-2826. |
[17] | Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chem. Mater., 1994, 6(8): 1176-1191. |
[18] | Korosi L, Papp S, Beke S, et al. Effects of phosphate modification on the structure and surface properties of ordered mesoporous SnO2. Micropor. Mesopor. Mat., 2010, 134(1/2/3): 79-86. |
[19] | Hyodo T, Nishida N, Shimizu Y, et al. Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sensor Actuat. B-Chem., 2002, 83(1/2/3): 209-215. |
[20] | Wang Y D, Ma C L, Sun X D, et al. Synthesis of mesoporous structured material based on tin oxide. Micropor. Mesopor. Mat., 2001, 49(1/2/3): 171-178. |
[21] | Gao X P, Bao J L, Pan G L, et al. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B, 2004, 108(18): 5547-5551. |
[22] | Wang J H, LI B, Wu H Y, et al. Synthesis of mesoporous SnO2 and its applicat ion in lithium-ion battery. Acta Phys. Chim. Sin., 2008, 24(4): 681-685. |
[23] | Yu A S, Frech R. Mesoporous tin oxides as lithium intercalation anode materials. J. Power Sources, 2002, 104(1): 97-100. |
[24] | Demir-Cakan R, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater., 2008, 20(4): 1227-1229. |
[25] | Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater., 2011, 21(9): 1717-1722. |
[26] | Xu G L, Chen S R, Li J T, et al. A composite material of SnO2/ordered mesoporous carbon for the application in lithium-ion battery. J. Electroanal. Chem. 2011, 656(1/2): 185-191. |
[27] | Wen Z H, Wang Q, Zhang Q, et al. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater., 2007, 17(15): 2772-2778. |
[28] | Xu C H, Sun J, Gao L. Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J. Phys. Chem. C, 2009, 113(47): 20509-20513. |
[1] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[2] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[3] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[4] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[5] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[6] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[7] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[8] | WANG Juhan,WEN Xiong,LIU Chengchao,ZHANG Yuhua,ZHAO Yanxi,LI Jinlin. Preparation and Fischer-Tropsch Synthesis Performance of Hierarchical Co/Al-SiO2 Catalyst [J]. Journal of Inorganic Materials, 2020, 35(9): 999-1004. |
[9] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[10] | XU Yun-Qing,WANG Hai-Zeng. Sodium Magnesium Fluoride Particles of Different Morphologies: Prepared by EDTA-assisted Hydrothermal Method [J]. Journal of Inorganic Materials, 2019, 34(9): 933-937. |
[11] | GOU Sheng-Lian, NAI Xue-Ying, XIAO Jian-Fei, YE Jun-Wei, DONG Ya-Ping, LI Wu. Preparation and Thermal Decomposition of Basic Magnesium Chloride Whiskers [J]. Journal of Inorganic Materials, 2019, 34(7): 781-785. |
[12] | Wei LIU, Kai ZHENG, Dong-Hong WANG, Yi-San LEI, Huai-Lin FAN. Co3O4 Nanowire Arrays@Activated Carbon Fiber Composite Materials: Facile Hydrothermal Synthesis and Its Electrochemical Application [J]. Journal of Inorganic Materials, 2019, 34(5): 487-492. |
[13] | WANG Wei, LUO Shi-Jie, XIAN Cong, XIAO Qun, YANG Yang, OU Yun, LIU Yun-Ya, XIE Shu-Hong. Enhanced Thermoelectric Properties of Hydrothermal Synthesized BiCl3/Bi2S3 Composites [J]. Journal of Inorganic Materials, 2019, 34(3): 328-334. |
[14] | JIANG Hai-Yan, XIA Yun-Sheng, LI Yu-Zhen. Preparation and Visible-light-driven Photocatalytic Performance of Porous Rod-like FeVO4 [J]. Journal of Inorganic Materials, 2018, 33(9): 949-955. |
[15] | CAI Jian-Xin, LI Zhi-Peng, LI Wei, ZHAO Peng-Fei, YANG Zhen-Yu, YU Ji. Synthesis and Electrochemical Performance of Fe2O3 Nanofibers as Anode Materials for LIBs [J]. Journal of Inorganic Materials, 2018, 33(3): 301-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||