 
 Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1337-1342.DOI: 10.15541/jim20210177
Special Issue: 【虚拟专辑】碳中和(2020~2021)
• RESEARCH LETTER • Previous Articles Next Articles
					
													TIAN Jianjian1,2( ), MA Xia1,2, WANG Min1, YAO Heliang1, HUA Zile1, ZHANG Lingxia1,2,3(
), MA Xia1,2, WANG Min1, YAO Heliang1, HUA Zile1, ZHANG Lingxia1,2,3( )
)
												  
						
						
						
					
				
Received:2021-03-19
															
							
																	Revised:2021-05-07
															
							
															
							
																	Published:2021-12-20
															
							
																	Online:2021-05-25
															
						Contact:
								ZHANG Lingxia, professor. E-mail: zhlingxia@mail.sic.ac.cn     
													About author:TIAN Jianjian (1989-), female, PhD. E-mail: tianshujian11@163.com				
													Supported by:CLC Number:
TIAN Jianjian, MA Xia, WANG Min, YAO Heliang, HUA Zile, ZHANG Lingxia. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2021, 36(12): 1337-1342.
| Electrocatalyst | Electrolyte | Potential /V (vs. RHE) | FEHCOOH /% | Current density /(mA·cm-2) | Stability/h | Ref. | 
|---|---|---|---|---|---|---|
| Sn-QDs/CN | 0.1 mol·L-1 KHCO3 | -1.0 | 95 | 3.3 | 24 | This work | 
| Sn quantum sheets confined in graphene | 0.1 mol·L-1 NaHCO3 | -1.2 | 89 | 21.1 | 50 | [1] | 
| Nano-SnO2/graphene | 0.1 mol·L-1 NaHCO3 | -1.2 | 93.6 | 10 | - | [2] | 
| SnO2 nanoparticles (< 5 nm) | 0.1 mol·L-1 KHCO3 | -1.2 | 64 | 147 | - | [3] | 
| SnO2 nanoparticles (~500 nm) | 0.1 mol·L-1 KHCO3 | -1.2 | 83.5 | 7.56 | - | [4] | 
| SnO2 nanoparticles (100 nm) | 0.5 mol·L-1 KHCO3 | -0.9 | 80 | 12 | - | [5] | 
| SnO2 nanoparticles (8-20 nm) | 0.1 mol·L-1 KHCO3 | -1.06 | 82 | 15.3 | 5 | [6] | 
| SnO2@N-CNW | 0.5 mol·L-1 NaHCO3 | -0.8 | 90 | 13 | 20 | [7] | 
| SnO2@N-rGO | 0.5 mol·L-1 NaHCO3 | -0.8 | 89 | 21.3 | 20 | [8] | 
| SnO2/PC | 0.5 mol·L-1 KHCO3 | -0.86 | 92 | 29 | 10 | [9] | 
| SnO2⊃NC@EEG | 0.1 mol·L-1 KHCO3 | -1.2 | 81.2 | 13.4 | 10 | [10] | 
| SnO/C | 0.5 mol·L-1 KHCO3 | -0.86 | 75 | 27.2 | - | [11] | 
| Electrocatalyst | Electrolyte | Potential /V (vs. RHE) | FEHCOOH /% | Current density /(mA·cm-2) | Stability/h | Ref. | 
|---|---|---|---|---|---|---|
| Sn-QDs/CN | 0.1 mol·L-1 KHCO3 | -1.0 | 95 | 3.3 | 24 | This work | 
| Sn quantum sheets confined in graphene | 0.1 mol·L-1 NaHCO3 | -1.2 | 89 | 21.1 | 50 | [1] | 
| Nano-SnO2/graphene | 0.1 mol·L-1 NaHCO3 | -1.2 | 93.6 | 10 | - | [2] | 
| SnO2 nanoparticles (< 5 nm) | 0.1 mol·L-1 KHCO3 | -1.2 | 64 | 147 | - | [3] | 
| SnO2 nanoparticles (~500 nm) | 0.1 mol·L-1 KHCO3 | -1.2 | 83.5 | 7.56 | - | [4] | 
| SnO2 nanoparticles (100 nm) | 0.5 mol·L-1 KHCO3 | -0.9 | 80 | 12 | - | [5] | 
| SnO2 nanoparticles (8-20 nm) | 0.1 mol·L-1 KHCO3 | -1.06 | 82 | 15.3 | 5 | [6] | 
| SnO2@N-CNW | 0.5 mol·L-1 NaHCO3 | -0.8 | 90 | 13 | 20 | [7] | 
| SnO2@N-rGO | 0.5 mol·L-1 NaHCO3 | -0.8 | 89 | 21.3 | 20 | [8] | 
| SnO2/PC | 0.5 mol·L-1 KHCO3 | -0.86 | 92 | 29 | 10 | [9] | 
| SnO2⊃NC@EEG | 0.1 mol·L-1 KHCO3 | -1.2 | 81.2 | 13.4 | 10 | [10] | 
| SnO/C | 0.5 mol·L-1 KHCO3 | -0.86 | 75 | 27.2 | - | [11] | 
| Parameter | Rs/Ω | Rct/Ω | CPE-T | CPE-P | 
|---|---|---|---|---|
| Sn-QDs/CN | 102.6 | 276.3 | 1.2×10-5 | 0.85 | 
| Sn-p/CN | 96.74 | 336.9 | 1.1×10-5 | 0.89 | 
| Parameter | Rs/Ω | Rct/Ω | CPE-T | CPE-P | 
|---|---|---|---|---|
| Sn-QDs/CN | 102.6 | 276.3 | 1.2×10-5 | 0.85 | 
| Sn-p/CN | 96.74 | 336.9 | 1.1×10-5 | 0.89 | 
| [1] | LI X D, WANG S M, LI L, et al. Progress and perspective for in situ studies of CO2 reduction. Journal of the American Chemical Society, 2020, 142: 9567-9581. | 
| [2] | BIRDJA Y Y, PEREZ-GALLENT E, FIGUEIREDO M, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4: 732-745. DOI URL | 
| [3] | VASILEFF A, ZHENG Y, QIAO S Z. Carbon solving carbon's problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Advanced Energy Materials, 2017, 7(21): 1700759. DOI URL | 
| [4] | SHAO P, YI L C, CHEN S M, et al. Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers. Journal of Energy Chemistry, 2020, 40: 156-170. DOI URL | 
| [5] | ZHANG L, ZHAO Z J, GONG J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition, 2017, 56(38): 11326-11353. DOI URL | 
| [6] | MISTRY H, RESKE R, ZENG Z H, et al. Exceptional size- dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. Journal of the American Chemical Society, 2014, 136(47): 16473-16476. DOI URL | 
| [7] | TYO E C, VAJDA S. Catalysis by clusters with precise numbers of atoms. Nature Nanotechnology, 2015, 10(7): 577-588. DOI URL | 
| [8] | GAO D F, ZHOU H, WANG J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. DOI URL | 
| [9] | LIU S G, HUANG S P. Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction. Applied Surface Science, 2019, 475: 20-27. DOI URL | 
| [10] | LEE C H, KANAN M W. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catalysis, 2014, 5(1): 465-469. DOI URL | 
| [11] | LI Z D, HE D, YAN X X, et al. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angewandte Chemie International Edition, 2020, 59: 2-8. DOI URL | 
| [12] | RESKE R, MISTRY H, BEHAFARID F, et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society, 2014, 136(19): 6978-6986. DOI URL | 
| [13] | LÜ K L, SUO W Q, SHAO M D, et al. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency. Nano Energy, 2019, 63: 103834. DOI URL | 
| [14] | LIU M, LIU M X, WANG X M, et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule, 2019, 3(7): 1703-1718. DOI URL | 
| [15] | WU J J, MA S C, SUN J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communication, 2016, 7: 13869. DOI URL | 
| [16] | TIAN J J, WANG M, SHEN M, et al. Highly efficient and selective CO2 electro-reduction to HCOOH on Sn particle- decorated polymeric carbon nitride. ChemSusChem, 2020, 13(23): 6442-6448. | 
| [17] | WEN G B, LEE D U, REN B H, et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Advanced Energy Materials, 2018, 8(31): 1802427. DOI URL | 
| [18] | LI P X, FU W Z, ZHUANG P Y, et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small, 2019, 15(40): 1902535. DOI URL | 
| [19] | TIAN J J, ZHANG L X, WANG M, et al. Remarkably enhanced H2 evolution activity of oxidized graphitic carbon nitride by an extremely facile K2CO3-activation approach. Applied Catalysis B: Environmental, 2018, 232: 322-329. DOI URL | 
| [20] | WEN J, XIE J, CHEN X, et al. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72-123. DOI URL | 
| [21] | LAI Q, YUAN W Y, HUANG W J, et al. Sn/SnOx electrode catalyst with mesoporous structure for efficient electroreduction of CO2 to formate. Applied Surface Science, 2020, 508: 145221. DOI URL | 
| [22] | LIU S B, XIAO J, LU X F, et al. Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angewandte Chemie International Edition, 2019, 58: 8499-8503. DOI URL | 
| [23] | LUC W, COLLINS C, WANG S W, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. Journal of the American Chemical Society, 2017, 139(5): 1885-1893. DOI URL | 
| [24] | BANG J H, CHOI M S, MIRZAEI A, et al. Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires. Sensors and Actuators B: Chemical, 2018, 274: 356-369. DOI URL | 
| [25] | MA Y, WANG Z, XU X, et al. Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chinese Journal of Catalysis, 2017, 38(12): 1956-1969. DOI URL | 
| [26] | CHEN Z, GAO M R, DUAN N, et al. Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Applied Catalysis B: Environmental, 2020, 277: 119252. DOI URL | 
| [27] | NGUYEN T N, SALEHI M, LE Q, et al. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catalysis, 2020, 10(17): 10068-10095. DOI URL | 
| [28] | HE R, YUAN X, SHAO P F, et al. Hybridiztion of defective tin disulfide nanosheets and silver nanowires enables efficient electrochemical reduction of CO2 into formate and syngas. Small, 2019, 15(50): 1904882. DOI URL | 
| [1] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. | 
| [2] | LI Chengjin, XUE Yi, ZHOU Xiaoxia, CHEN Hangrong. BiZnx/Si Photocathode: Preparation and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2022, 37(10): 1093-1101. | 
| [3] | ZHU Yong, GU Jun, YU Tao, HE Haitong, YAO Rui. Synthesis and Property of Platinum-cobalt Alloy Nano Catalyst [J]. Journal of Inorganic Materials, 2021, 36(3): 299-305. | 
| [4] | YANG Zhi-Bin, YUE Tong-Lian, YU Xiang-Nan, WU Miao-Miao. Electrocatalytic Activity of Cobalt Doped Ceria Nanoparticles [J]. Journal of Inorganic Materials, 2018, 33(8): 845-853. | 
| [5] | ZHANG Zhi-An, ZHOU Geng, PENG Bin, LU Hai, JIA Ming, LAI Yan-Qing, LI Jie. Synthesis and Electrochemical Performance of Carbon Nanotubes/Cobalt Manganese Oxides Composite Materials for Lithium Air Batteries [J]. Journal of Inorganic Materials, 2013, 28(9): 949-955. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||