Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 513-520.DOI: 10.15541/jim20200386
Special Issue: 【虚拟专辑】LED发光材料
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Zhaowu1(), JI Haipeng1(
), WANG Feixiang1, HOU Xinghui1, YI Shasha1, ZHOU Ying1, CHEN Deliang1,2(
)
Received:
2020-07-09
Revised:
2020-08-26
Published:
2021-05-20
Online:
2021-04-19
Contact:
JI Haipeng, lecturer. E-mail: jihp@zzu.edu.cn; CHEN Deliang, professor. E-mail: dlchen@zzu.edu.cn
About author:
WANG Zhaowu(1985-), male, PhD candidate. E-mail:smithen0504@gs.zzu.edu.cn
Supported by:
CLC Number:
WANG Zhaowu, JI Haipeng, WANG Feixiang, HOU Xinghui, YI Shasha, ZHOU Ying, CHEN Deliang. Valence State Control of Manganese in MgAl2O4:Mn4+ Phosphor by Varying the Al2O3 Crystal Form[J]. Journal of Inorganic Materials, 2021, 36(5): 513-520.
Fig. 1 XRD patterns of the raw and heat-treated (at 1400 ℃ for 5 h) nano-γ-Al2O3 (the standard patterns for γ-Al2O3 and α-Al2O3 are also given) (a), XRD patterns of MgAl2O4:Mn phosphors synthesized using alumina sources with different α/(α+γ) ratios (b), and photoluminescence emission spectra of the MgAl2O4:Mn synthesized using alumina sources with different α/(α+γ) ratios (λex=365 nm) and the excitation spectra monitored for 520 and 651 nm emission of MgAl2O4:Mn with α/(α+γ)=50% (c)
Fig. 2 Digital images (λex=365 nm) of the MgAl2O4:Mn phosphors synthesized using the alumina sources with different α/(α+γ) ratios (a) 100%; (b) 75%; (c) 50%; (d) 25%; (e) 0
Fig. 5 Photoluminescence emission spectra (λex=365 nm) of the MgAl2O4:Mn phosphors using the Al2O3 with different α/(α+γ) ratios annealed at 1000 ℃ for 10 h (a), annealed at 1000 ℃ for 10 h and at 1200 ℃ for another 10 h (b), I651 nm/I520 nm ratios calculated from the luminescence spectra of the MgAl2O4:Mn phosphors (both as-prepared and post-annealed) (c)
Fig. 6 XRD pattern (a) and photoluminescence spectrum (λex=365 nm) (b) of the phosphor synthesized at 1550 ℃ for 5 h using Al2O3 (AR, γ-phase, micro size) as the alumina source
No. | Methods | Results |
---|---|---|
1 | Control of atmosphere | Reducing atmosphere generating green-emitting MgAl2O4:Mn2+ phosphor [ |
2 | Control of charge compensator | Deficient MgO generating green-emitting MgAl2O4:Mn2+ phosphor in the raw materials while excessive MgO generating red-emitting MgAl2O4:Mn4+ phosphor[ |
3 | Control of heating temperature | Heating at low temperatures generating red-emitting MgAl2O4:Mn4+ phosphors while heating at higher temperature with longer duration period generating green-emitting MgAl2O4:Mn2+ phosphor[ |
4 | Control of Al3+- bearing source | Highly reactive γ-Al2O3 as the Al3+-bearing source preferentially producing red-emitting MgAl2O4:Mn4+ phosphor |
Table 1 Methods to regulate the valence state of manganese ion in the MgAl2O4:Mn phosphor
No. | Methods | Results |
---|---|---|
1 | Control of atmosphere | Reducing atmosphere generating green-emitting MgAl2O4:Mn2+ phosphor [ |
2 | Control of charge compensator | Deficient MgO generating green-emitting MgAl2O4:Mn2+ phosphor in the raw materials while excessive MgO generating red-emitting MgAl2O4:Mn4+ phosphor[ |
3 | Control of heating temperature | Heating at low temperatures generating red-emitting MgAl2O4:Mn4+ phosphors while heating at higher temperature with longer duration period generating green-emitting MgAl2O4:Mn2+ phosphor[ |
4 | Control of Al3+- bearing source | Highly reactive γ-Al2O3 as the Al3+-bearing source preferentially producing red-emitting MgAl2O4:Mn4+ phosphor |
[1] |
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews, 2018,118(4):1951-2009.
URL PMID |
[2] |
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2:Eu2+ phosphor for backlight display application. Advanced Materials, 2018,30:1802489.
DOI URL |
[3] |
QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium- doped near-infrared-emitting phosphor for light-emitting diodes. Nature Communications, 2019,10:5267.
DOI URL PMID |
[4] |
ZHAO M, LIAO H, MOLOKEEV M S, et al. Emerging ultra- narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light-Science & Application, 2019,8:38.
DOI URL |
[5] | ZHOU Y Y, WANG L Y, DENG T T, et al. Recent advances in Mn4+-doped fluoride narrow-band red-emitting phosphors. Scientia Sinica Technologica, 2017,47(11):1111-1125. |
[6] |
JI H P, ZHANG Z T, XU J, et al. Advance in red-emitting Mn4+-activated oxyfluoride phosphors. Journal of Inorganic Materials, 2020,35(8):847-856.
DOI URL |
[7] |
JI H P, HOU X H, MOLOKEEV M, et al. Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm. Dalton Transactions, 2020,49(17):5711-5721.
DOI URL PMID |
[8] |
XU Y D, WANG D, WANG L, et al. Preparation and luminescent properties of a new red phosphor (Sr4Al14O25:Mn4+) for white LEDs. Journal of Alloys and Compounds, 2013,550:226-230.
DOI URL |
[9] |
PENG M Y, YIN X W, TANNER P A, et al. Orderly-layered tetravalent manganese-doped strontium aluminate Sr4Al14O25:Mn4+: an efficient red phosphor for warm white light emitting diodes. Journal of the American Ceramic Society, 2013,96(9):2870-2876.
DOI URL |
[10] |
SASAKI T, FUKUSHIMA J, HAYASHI Y, et al. Synthesis and photoluminescence properties of a novel Sr2Al6O11:Mn4+ red phosphor prepared with a B2O3 flux. Journal of Luminescence, 2018,194:446-451.
DOI URL |
[11] |
WANG X, LI P F, BRIK M G, et al. Thermal quenching of Mn4+ luminescence in SrAl12O19:Mn4+. Journal of Luminescence, 2019,206:84-90.
DOI URL |
[12] |
WANG B, LIN H, XU J, et al. CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED. ACS Applied Materials & Interfaces, 2014,6(24):22905-22913.
URL PMID |
[13] |
TAO S, HUANG W F, LIU Y S, et al. Three-dimensional hollow spheres of the tetragonal-spinel MgMn2O4 cathode for high-performance magnesium ion batteries. Journal of Materials Chemistry A, 2018,6(18):8210-8214.
DOI URL |
[14] | ZHONG R X, ZHANG J H, WEI H Z, et al. The different luminescent characteristics of MgAl2O4:Mn2+ between phosphor powder and nanoparticles. Chemical Physics Letters, 2011,508(4/5/6):207-209. |
[15] | SONG E H, ZHOU Y Y, WEI Y, et al. A thermally stable narrow- band green-emitting phosphor MgAl2O4:Mn2+ for wide color gamut backlight display application. Journal of Materials Chemistry C, 2019,7(27):8192-8198. |
[16] | WAKUI Y, SHAN Y J, TEZUKA K, et al. Crystal-site engineering approach for preparation of MgB2O4:Mn2+,Mn4+(B=Al,Ga) phosphors: control of green/red luminescence properties. Materials Research Bulletin, 2017,90:51-58. |
[17] | ZHANG Y L, LIU Y L, YANG L, et al. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors. Journal of Luminescence, 2020,220:117016. |
[18] | CHI N T K, QUANG N V, TUAN N T, et al. Deep red emitting MgAl2O4:Cr3+ phosphor for solid state lighting. Journal of Electronic Materials. 2019,48(9):5891-5899. |
[19] | ZHANG Y L, HU S, LIU Y L, et al. Red-emitting Lu3Al5O12:Mn transparent ceramic phosphors: valence state evolution studies of Mn ions. Ceramics International, 2018,44(18):23259-23262. |
[20] | DUAN C J, DELSING A C A, HINTZEN H T. Photoluminescence properties of novel red-emitting Mn2+-activated MZnOS (M= Ca, Ba) phosphors. Chemistry of Materials, 2009,21(6):1010-1016. |
[21] | KÜCK S, HARTUNG S, HURLING S, et al. Optical transitions in Mn3+-doped garnets. Physical Review B, 1998,57(4):2203-2216. |
[22] | ZHANG Y L, HU S, LIU Y L, et al. Influences of thermal post-treatment on the Mn valence states and luminescence properties of red-emitting Lu3Al5O12:Mn4+ transparent ceramic phosphors. Optical Materials , 2020,101:109705. |
[23] | CHEN L, XUE S, CHEN X, et al. The site occupation and valence of Mn ions in the crystal lattice of Sr4Al14O25 and its deep red emission for high color-rendering white light-emitting diodes. Materials Research Bulletin, 2014,60:604-611. |
[24] | XU H, WANG L, MA X, et al. A novel Mn(II)-based green phosphor and its self-reduction mechanism. Journal of Luminescence, 2018,194:303-310. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847-856. |
[3] | ZHANG Rui, Wang Bo-Yang, WANG Hai. Advances in Phosphor-in-Glass for White LED [J]. Journal of Inorganic Materials, 2017, 32(4): 337-345. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1049
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||