Journal of Inorganic Materials
JIANG Yuehong, SONG Yunfeng, ZHANG Leilei, MA Ji, SONG Zhaoyuan, LONG Wen
Received:
2024-12-24
Revised:
2025-03-18
About author:
JIANG Yuehong (1994–), female, Master candidate. Email: jyh_940315@163.com
Supported by:
CLC Number:
JIANG Yuehong, SONG Yunfeng, ZHANG Leilei, MA Ji, SONG Zhaoyuan, LONG Wen. Fluorination of BaZr0.1Ce0.7Y0.1Yb0.1O3 as Electrolyte Material for Proton Conducting Solid Oxide Fuel Cell[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240535.
[1] TSVETKOV N, KIM D, JEONG I,et al. Advances in materials and interface understanding in protonic ceramic fuel cells. Advanced Materials Technologies, 2023, 8(20): 2201075. [2] GAO Y, LIU KC, LI Q,et al. The approaches to conducting in-situ heterostructure electrodes for SOCs: a mini review. Sustainable Materials and Technologies, 2024, 41: e01107. [3] LUO Y, ZHANG D, LIU T, et al. In situ exsolution of quaternary alloy nanoparticles for CO2‐CO mutual conversion using reversible solid oxide cells. Advanced Functional Materials, 2024, 34(40): 2403922. [4] ZHOU M Y, LIU Z J, CHEN M L,et al. Electrochemical performance and chemical stability of proton-conducting BaZr0.8-xCexY0.2O3-δ electrolytes. Journal of the American Ceramic Society, 2022, 105(9): 5711. [5] YANG L, WANG S, BLINN K, Liu, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science, 2009, 326(5949): 126. [6] GUO Y, LIN Y, RAN R, et al. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-δ(0.0≤y≤0.8) for fuel cell applications. Journal of Power Sources, 2009, 193(2): 400. [7] ZHONG Z.Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ionics, 2007, 178(3/4): 213. [8] CHOI S, KUCHARCZYK C J, LIANG Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3(3): 202. [9] CHOI S Y, TIMOTH C, SOSSINA M H.Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency.Energy and Environmental Science, 2019, 12(1): 206. [10] REN R, Yu X, WANG Z,et al. Fluorination inductive e□ect enables rapid bulk proton diffusion in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxide for high-activity protonic ceramic fuel cell cathode. Applied Catalysis B: Environmental, 2022, 317(1): 121759. [11] LI W, LI Y, F L, et al. Enhancing performance of proton ceramic fuel cells through fluorine-doped perovskite oxides. Rare Metals, 2025, DOI: 10.1007/s12598-024-03115-8 [12] JIANG T, LIU Y, WANG Z,et al. An improved direct current sintering technique for proton conductor - BaZr0.1Ce0.7Y0.1Yb0.1O3-δ: the effect of direct current on sintering process. Journal of Power Sources, 2014, 248(8): 70. [13] ZHANG Y, XIE D, CHI B,et al. Basic properties of proton conductor BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb) material. Asia-Pacific Journal of Chemical Engineering, 2019, 14(4): 58. [14] CHEN T, JING Y H, ANDERSON L O, et al. Toward durable protonic ceramic cells: hydration-induced chemical expansion correlates with symmetry in the Y-doped BaZrO3-BaCeO3 solid solution. The Journal of Physical Chemistry, 2021, 125(47): 26216. [15] LOKEN A, RICOTE S, WACHOWSKI S,et al. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals, 2018, 8(9): 365. [16] STOKES S J, SAIFUL I.Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. Journal of Materials Chemistry, 2010, 20(6): 6258. [17] ZHONG Z Y, SONG T, ZHAO S K,et al. High-performance BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb) protonic ceramic fuel cell electrolytes by the Ba evaporation inhibition strategy. Ceramics International, 2024, 50(2): 3633. [18] ZHU H, RICOTE S, COORS W G,et al. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defeat conducting ceramics. Faraday Discussions, 2015, 182(3): 49. [19] ZHU H Y, SANDRINE R, DUAN C C, et al. Defect chemistry and transport within dense BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb) proton-conducting membranes. Journal of The Electrochemical Society, 2018, 10(2): 3633. [20] SOMEKAWA T, TACHIKAWA Y, TACHIKAWA Y,et al. Physicochemical properties of proton conductive Ba(Zr0.1Ce0.7Y0.1Yb0.1)O3-δ solid electrolyte in terms of electrochemical performance of solid oxide fuel cells. International journal of hydrogen energy, 2016, 41(39): 17539. [21] WANG J, ZHANG D, LIU T,et al. Self-assembled Fe Ru bimetallic nano catalysts for efficient and durable mutual CO-CO2 conversion in a reversible solid oxide electrochemical cell. Science China Materials, 2024, 67(5): 1471. [22] CHEN H N, ZHANF H C, ZHOU Y J,et al. Structure-conduction correlations in a chlorine-rich superionic lithium-argyrodite solid electrolyte: a DRT analysis. Journal of Power Sources, 2023, 583(1): 233579. [23] YANG Q, TIAN D, LIU R,et al. Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln= La and Nd) for SOFCs. International Journal of Hydrogen Energy, 2021, 46(7): 5630. [24] D.L, YAN.D, JIA L,et al. A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell. Electrchimica Acta, 2020, 344(4): 136. [25] SUMI H, SHIMADA H, WAANABE K,et al. External current dependence of polarization resistances for reversible solid oxide and protonic ceramic cells with current leakage. ACS Applied Energy Materials 2023, 6(3): 1853. [26] SHI H G, HU Y, FENG Z X,et al. Solid-state synthesis of BaCe0.16Y0.04Fe0.8O3-δ cathode for protonic ceramic fuel cells. Asia-Pacific Journal of Chemical Engineering, 2022, 17(4): e2789 . |
[1] | WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(5): 497-503. |
[2] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[3] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[4] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[5] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[6] | SU Nan, QIU Jieshan, WANG Zhiyu. F-doped Carbon Coated Nano-Si Anode with High Capacity: Preparation by Gaseous Fluorination and Performance for Lithium Storage [J]. Journal of Inorganic Materials, 2023, 38(8): 947-953. |
[7] | WANG Huajin, KOU Huamin, WANG Yongzhe, JIANG Dapeng, ZHANG Bo, QIAN Xiaobo, WANG Jingya, ZHU Linling, ZENG Aijun, YANG Qiuhong, SU Liangbi. Irradiation Damage of CaF2 with Different Yttrium Concentrations under 193 nm Laser [J]. Journal of Inorganic Materials, 2023, 38(2): 219-224. |
[8] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[9] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[10] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[11] | JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847-856. |
[12] | LI Zehui,TAN Meijuan,ZHENG Yuanhao,LUO Yuyang,JING Qiushi,JIANG Jingkun,LI Mingjie. Application of Conductive Metal Organic Frameworks in Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(7): 769-780. |
[13] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[14] | DING Jianxiang,HUANG Peiyan,ZHA Yuhui,WANG Dandan,ZHANG Peigen,TIAN Wubian,SUN Zhengming. High-purity Ti2AlC Powder: Preparation and Application in Ag-based Electrical Contact Materials [J]. Journal of Inorganic Materials, 2020, 35(6): 729-734. |
[15] | ZHENG Kun, LUO Yongchun, DENG Anqiang, YANG Yang, ZHANG Haiming. Microstructure and Electrochemical Property of A2B7-type La0.3Y0.7Ni3.4-xMnxAl0.1 Hydrogen Storage Alloys [J]. Journal of Inorganic Materials, 2020, 35(5): 549-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||