Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 961-968.DOI: 10.15541/jim20210724
Special Issue: 【信息功能】敏感陶瓷(202409); 【信息功能】电致变色与热致变色材料(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Jiaqiang1,2(), ZOU Xinlei1, WANG Nengze3, JIA Chunyang1(
)
Received:
2021-11-24
Revised:
2022-01-19
Published:
2022-09-20
Online:
2022-06-16
Contact:
JIA Chunyang, professor. E-mail: cyjia@uestc.edu.cnAbout author:
ZHANG Jiaqiang (1985-), male, PhD candidate. E-mail: jqzhangl@163.com
Supported by:
CLC Number:
ZHANG Jiaqiang, ZOU Xinlei, WANG Nengze, JIA Chunyang. Zn-Fe PBA Films by Two-step Electrodeposition Method: Preparation and Performance in Electrochromic Devices[J]. Journal of Inorganic Materials, 2022, 37(9): 961-968.
Fig. 1 Topography analyses of Zn film and Zn-Fe PBA film (a) Digital photo and SEM images of Zn film; (b) Digital photo and SEM images of Zn-Fe PBA film
Fig. 3 XPS spectra of Zn-Fe PBA film (a) Full spectrum; (b-f) C1s, N1s, Fe2p, O1s, and Zn2p binding energy spectra. Colorful figures are available on website
Fig. 6 Performance of multicolor electrochromic devices (a) Schematic diagram of MCECD preparation process; (b) Cyclic voltammetry curves of MCECDs; (c) Transmittance spectra of MCECDs at the initial state; (d) Transmittance spectra under different applied voltages of Z-MCECD; (e) Step cycle stability of MCECDs; (f) Digital photos of Z-MCECD under different applied voltages. Colorful figures are available on website
Fig. 7 Response speed of Z-MCECD (a-f) Transmittance time curves between (a) red and blue, (b) red and green, (c) red and yellow, (d) blue and green, (e) blue and yellow, and (f) green and yellow, respectively. Colorful figures are available on website
[1] | YASHIRO T, OAKADA Y, NAIJOH Y. Novel design for color electrochromic display. International Display Workshops, 2011, 42(1): 42-45. |
[2] |
WANG Y, WANG S, WANG X, et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nature Materials, 2019, 18(12): 1335-1342.
DOI URL |
[3] |
PAN J, WANG Y, ZHENG R, et al. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. Journal of Materials Chemistry A, 2019, 7(23): 13956-13967.
DOI URL |
[4] |
WANG J, HOU L, MA D. Molybdenum oxide electrochromic materials and devices. Journal of Inorganic Materials, 2021, 36(5): 461-470.
DOI URL |
[5] | LI F, MA D, QIAN J, et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Solar Energy Materials and Solar Cells, 2019, 192: 103-108. |
[6] | DYER A L, THOMPSON E J, REYNOLDS J R. Completing the color palette with spray-processable polymer electrochromics. ACS Applied Materials & Interfaces, 2011, 3(6): 1787-1795. |
[7] | LI K, ZHANG Q, WANG H, et al. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Applied Materials & Interfaces, 2014, 6(15): 13043-13050. |
[8] | MOON H C, KIM C H, LODGE T P, et al. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Applied Materials & Interfaces, 2016, 8(9): 6252-6260. |
[9] | YANG B, MA D, ZHENG E, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cell, 2019, 192: 1-7. |
[10] | ZHENG R, FAN Y, WANG Y, et al. A bifunctional triphenylamine- based electrochromic polymer with excellent self-healing performance. Electrochimica Acta, 2018, 286: 296-303. |
[11] |
KIM J W, MYOUNG J M, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Advanced Functional Materials, 2019, 29(13): 1808911.
DOI URL |
[12] | KIM D S, PARK H, HONG S Y, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019, 471: 300-308. |
[13] | ALESANCO Y, VINUALES A, PALENZUELA J, et al. Multicolor electrochromics: rainbow-like devices. ACS Applied Materials & Interfaces, 2016, 8(23): 14795-14801. |
[14] |
HE W, LIU Y, WAN Z, et al. Electrodeposition of V2O5 on TiO2 nanorod arrays and their electrochromic properties. RSC Advanced, 2016, 6(73): 68997-69006.
DOI URL |
[15] | ZOU X, WANG Y, TAN Y, et al. Achieved RGBY four colors changeable electrochromic pixel by coelectrodeposition of iron hexacyanoferrate and molybdate hexacyanoferrate. ACS Applied Materials & Interfaces, 2020, 12(26): 29432-29442. |
[16] |
ZHENG L, CHEN L, ZHOU X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials, 2015, 5(2): 1400930.
DOI URL |
[17] |
ZHOU A, CHENG W, WANG W, et al. Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high- performance sodium and potassium ion batteries. Advanced Energy Materials, 2020, 11(2): 2000943.
DOI URL |
[18] |
HONG S, CHEN S. A red-to-gray poly(3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT:PSS composite counter electrode. Electrochimica Acta, 2010, 55(12): 3966-3973.
DOI URL |
[19] |
ZHANG L, CHEN L, ZHOU X, et al. Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Scientific Reports, 2015, 5(1): 18263.
DOI URL |
[20] | LEE K, TANAKA H, TAKAHASHI A, et al. Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes. Electrochimica Acta, 2015, 163: 288-295. |
[21] |
KHOLOUD E, WATANABE H, TAKAHASHI A, et al. Cobalt hexacyanoferrate nanoparticles for wet-processed brown-bleached electrochromic devices with hybridization of high-spin/low-spin phases. Journal of Materials Chemistry C, 2017, 5(35): 8921-8926.
DOI URL |
[22] | TAKAHASHI A, NOBA K, WATANABE H, et al. One million cyclable blue/colourless electrochromic device using K2Zn3[Fe(CN)6]2 nanoparticles synthesized with a micromixer. RSC Advances, 2019, 9(70): 41083-41087. |
[23] | HONG S, CHEN L. Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows. Solar Energy Materials and Solar Cells, 2012, 104: 64-74. |
[24] | VENTURA M, MULLALIU A, CIURDUC D E, et al. Thin layer films of copper hexacyanoferrate: structure identification and analytical applications. Journal of Electroanalytical Chemistry, 2018, 827: 10-20. |
[25] |
WANG Y, JIANG H, ZHENG R, et al. A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. Journal of Materials Chemistry A, 2020, 8(25): 12799-12809.
DOI URL |
[26] | PEREIRA N M, PEREIRA C M, ARAÚJO J P, et al. Zinc electrodeposition from deep eutectic solvent containing organic additives. Journal of Electroanalytical Chemistry, 2017, 801: 545-551. |
[27] | WANG N, WAN H, DUAN J, et al. A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11: 100149. |
[28] | HEGNER F S, GALÁN-MASCARÓS J R, LOPEZ N. A database of the structural and electronic properties of Prussian blue, Prussian white, and Berlin green compounds through density functional theory. Inorganic Chemistry, 2016, 55(24): 12851-12862. |
[29] |
MA Q, ZHANG H, CHEN J, et al. Lithium-ion-assisted ultrafast charging double-electrode smart windows with energy storage and display applications. ACS Central Science, 2020, 6(12): 2209-2216.
DOI URL |
[30] | LIAO H, LIAO T, CHEN W, et al. Molybdate hexacyanoferrate (MoOHCF) thin film: a brownish red Prussian blue analog for electrochromic window application. Solar Energy Materials and Solar Cells, 2016, 145: 8-15. |
[31] |
HEO J, CHAE M S, HYOUNG J, et al. Rhombohedral potassium-zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries. Inorganic Chemistry, 2019, 58(5): 3065-3072.
DOI URL |
[32] |
HUANG M, MENG J, HUANG Z, et al. Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9 V K-Zn hybrid aqueous batteries. Journal of Materials Chemistry A, 2020, 8(14): 6631-6637.
DOI URL |
[33] | NIU L, CHEN L, ZHANG J, et al. Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. Journal of Power Sources, 2018, 380: S135-S141. |
[34] | CHEN Y, BI Z, LI X, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochimica Acta, 2017, 224: 534-540. |
[35] | MAENG H, KIM D, KIM N, et al. Synthesis of spherical Prussian blue with high surface area using acid etching. Current Applied Physics, 2018, 18: S21-S27. |
[1] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[2] | ZHANG Xiaoyu, LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui, WANG Hongzhi. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode [J]. Journal of Inorganic Materials, 2022, 37(8): 883-890. |
[3] | WU Qi, CONG Shan, ZHAO Zhigang. Infrared Electrochromic Property of the Colorful Tungsten Oxide Films [J]. Journal of Inorganic Materials, 2021, 36(5): 485-491. |
[4] | ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials [J]. Journal of Inorganic Materials, 2021, 36(5): 451-460. |
[5] | WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum Oxide Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2021, 36(5): 461-470. |
[6] | FAN Hongwei, LI Kerui, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 115-127. |
[7] | ZHANG Cong, LI Yurou, SHAO Kang, LIN Jing, WANG Kai, PAN Zaifa. Luminescence Property of the Multicolor Persistent Luminescence Materials for Dynamic Anti-counterfeiting Applications [J]. Journal of Inorganic Materials, 2021, 36(12): 1256-1262. |
[8] | WANG Jinmin, YU Hongyu, MA Dongyun. Progress in the Preparation and Application of Nanostructured Manganese Dioxide [J]. Journal of Inorganic Materials, 2020, 35(12): 1307-1314. |
[9] | ZHANG Bin, HOU Cheng-Yi, WANG Hao-Peng, WANG Zhi-Qiang, BAI Yu-Miao, LI Qiang, ZHANG Qing-Hong, LI Yao-Gang, WANG Hong-Zhi. Preparation and Performance of Reduced Graphene Oxide Functionalized Flexible and Multicolor Electrothermal Chromatic Films [J]. Journal of Inorganic Materials, 2018, 33(11): 1232-1236. |
[10] | LU Shu-Juan, WANG Chang, ZHAO Bo-Wen, WANG Hao, LIU Jing-Bing, YAN Hui. Electrochromic Properties of PEG-modified Tungsten Oxide Thin Films [J]. Journal of Inorganic Materials, 2017, 32(2): 185-190. |
[11] | HUANG Yin-Song,ZHANG Yu-Zhi,HU Xing-Fang. Electrochromic Properties of Niobium Oxide Thin Films Fabricated byRF Sputtering [J]. Journal of Inorganic Materials, 2002, 17(3): 632-636. |
[12] | WANG Zhong-Chun,HU Xing-Fang. Dynamic Coloration Properties of Spin-coated WO3 Thin Films [J]. Journal of Inorganic Materials, 1998, 13(6): 932-936. |
[13] | WU Guangming,WU Yonggang,Ni Xingyuan,ZHOU Zhen,ZHANG Huiqin,JIN Zhemin,WU Xiang. Investigation of Charge Storage Properties in V2O5 Thin Films [J]. Journal of Inorganic Materials, 1997, 12(4): 545-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||