Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (10): 1123-1129.DOI: 10.15541/jim20190642
Special Issue: 功能材料论文精选(二):发光材料(2020)
Previous Articles Next Articles
LIU Mingzhu1,2(),NIU Chuanwen1,2,ZHANG Huanhuan3,XING Yanjun1,2(
)
Received:
2019-12-18
Revised:
2020-02-02
Published:
2020-10-20
Online:
2020-03-06
About author:
LIU Mingzhu (1993-), female, Master candidate. E-mail: mingzhu@163.com
Supported by:
CLC Number:
LIU Mingzhu, NIU Chuanwen, ZHANG Huanhuan, XING Yanjun. Preparation and Luminescence Properties of Cd-based MOF/Dye Composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1123-1129.
Sample | CA addition (mol/1×10-3mol Cd2+) | Addition ratio | ||
---|---|---|---|---|
CA/RhB | CA/CV | |||
MOF/CA | MOF/CA-1 | 1.25×10-7 | - | - |
MOF/CA-2 | 2.50×10-7 | - | - | |
MOF/CA-3(MOF/CA10) | 5.00×10-7 | - | - | |
MOF/CA-4 | 1.00×10-6 | - | - | |
MOF/CA-5 | 2.00×10-6 | - | - | |
MOF/CA+RhB | MOF/CA5+RhB | 2.5×10-7 | 5 : 1 | - |
MOF/CA10+RhB | 5.0×10-7 | 10 : 1 | - | |
MOF/CA20+RhB | 1.0×10-6 | 20 : 1 | - | |
MOF/CA+CV | MOF/CA5+CV | 2.5×10-7 | - | 5 : 1 |
MOF/CA10+CV | 5.0×10-7 | - | 10 : 1 | |
MOF/CA20+CV | 1.0×10-6 | - | 20 : 1 | |
MOF/CA+RhB+CV | MOF/CA1+RhB+CV | 5.0×10-8 | 1 : 1 | 1 : 1 |
MOF/CA3+RhB+CV | 1.5×10-7 | 3 : 1 | 3 : 1 | |
MOF/CA5+RhB+CV | 1.5×10-7 | 5 : 1 | 5 : 1 | |
MOF/CA10+RhB+CV | 5.0×10-7 | 10 : 1 | 10 : 1 | |
MOF/CA20+RhB+CV | 1.0×10-6 | 20 : 1 | 20 : 1 |
Table 1 Sample abbreviation and dye addition amount
Sample | CA addition (mol/1×10-3mol Cd2+) | Addition ratio | ||
---|---|---|---|---|
CA/RhB | CA/CV | |||
MOF/CA | MOF/CA-1 | 1.25×10-7 | - | - |
MOF/CA-2 | 2.50×10-7 | - | - | |
MOF/CA-3(MOF/CA10) | 5.00×10-7 | - | - | |
MOF/CA-4 | 1.00×10-6 | - | - | |
MOF/CA-5 | 2.00×10-6 | - | - | |
MOF/CA+RhB | MOF/CA5+RhB | 2.5×10-7 | 5 : 1 | - |
MOF/CA10+RhB | 5.0×10-7 | 10 : 1 | - | |
MOF/CA20+RhB | 1.0×10-6 | 20 : 1 | - | |
MOF/CA+CV | MOF/CA5+CV | 2.5×10-7 | - | 5 : 1 |
MOF/CA10+CV | 5.0×10-7 | - | 10 : 1 | |
MOF/CA20+CV | 1.0×10-6 | - | 20 : 1 | |
MOF/CA+RhB+CV | MOF/CA1+RhB+CV | 5.0×10-8 | 1 : 1 | 1 : 1 |
MOF/CA3+RhB+CV | 1.5×10-7 | 3 : 1 | 3 : 1 | |
MOF/CA5+RhB+CV | 1.5×10-7 | 5 : 1 | 5 : 1 | |
MOF/CA10+RhB+CV | 5.0×10-7 | 10 : 1 | 10 : 1 | |
MOF/CA20+RhB+CV | 1.0×10-6 | 20 : 1 | 20 : 1 |
Fig. 4 Fluorescence emission spectra of MOF and MOF/CA (a); CIE chromaticity diagram (b)( where 1: MOF/CA-1; 2: MOF/CA-2; 3: MOF/CA-3; 4: MOF/CA-4; 5: MOF/CA-5) and optical photos under daylight and UV light at 365 nm (c)
Fig. 5 Fluorescence emission spectra of MOF/CA+RhB (a), CIE chromaticity diagram (b) (where 1: MOF/CA5+RhB; 2: MOF/CA10+RhB; 3: MOF/CA20+RhB) and optical photos under sunlight and UV light at 365 nm (c)
Fig. 6 Fluorescence emission spectra of MOF/CA+CV (a), CIE chromaticity diagram (b)(where 4: MOF/CA5+CV; 5: MOF/CA10+CV; 6: MOF/CA20+CV)and optical photos under sunlight and UV light at 365 nm (c)
Fig. 7 Fluorescence emission spectra of MOF/CA+RhB+CV (a), CIE chromaticity diagram (b), where 7: MOF/CA20+RhB+CV; 8: MOF/CA10+RhB+CV; 9: MOF/CA5+RhB+CV; 10: MOF/CA3+RhB+CV; 11: MOF/CA1+RhB+CV; 1, 2, 3 are CIE chromaticity coordinates of MOF/CV+RhB in Fig. 5(b); 4, 5 and 6 are CIE chromaticity coordinates of MOF/CA+CV in Fig. 6(b), and optical photos under sunlight and UV light at 365 nm (c)
Sample | Changes of intensity of characteristic fluorescence peak R | |||
---|---|---|---|---|
RMOF | RCA | RRhB | RCV | |
MOF/CA1+RhB+CV | 1.00 | 1.00 | 1.00 | 1.00 |
MOF/CA3+RhB+CV | 0.71 | 1.79 | 0.92 | 0.95 |
MOF/CA5+RhB+CV | 0.70 | 2.70 | 1.28 | 1.17 |
MOF/CA10+RhB+CV | 0.52 | 4.31 | 1.69 | 1.38 |
MOF/CA20+RhB+CV | 0.28 | 3.15 | 1.30 | 1.12 |
Table 2 Changes of intensity of characteristic fluorescence peaks(R)in MOF/CA+RhB+CV
Sample | Changes of intensity of characteristic fluorescence peak R | |||
---|---|---|---|---|
RMOF | RCA | RRhB | RCV | |
MOF/CA1+RhB+CV | 1.00 | 1.00 | 1.00 | 1.00 |
MOF/CA3+RhB+CV | 0.71 | 1.79 | 0.92 | 0.95 |
MOF/CA5+RhB+CV | 0.70 | 2.70 | 1.28 | 1.17 |
MOF/CA10+RhB+CV | 0.52 | 4.31 | 1.69 | 1.38 |
MOF/CA20+RhB+CV | 0.28 | 3.15 | 1.30 | 1.12 |
[1] |
MONDAL T, MONDAL S, BOSE S , et al. Pure white light emission from a rare earth-free intrinsic metal-organic framework and its application in a WLED. Journal of Materials Chemistry C, 2018,6(3):614-621.
DOI URL |
[2] |
DING Y, ZHENG J, WANG J , et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. Journal of Materials Chemistry C , 2019,7(6):1502-1509.
DOI URL |
[3] |
YING L, HO C L, WU H , et al. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Advanced Materials , 2014,26(16):2459-2473.
DOI URL |
[4] |
WANG A, GUO Y, ZHOU Z , et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chemical Science , 2019,10(17):4573-4579.
DOI URL PMID |
[5] |
ZHOU Z, LI Q, HAN Y , et al. A highly connected (5,5,18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission. RSC Advances, 2015,5(118):97831-97835.
DOI URL |
[6] |
WANG A, HOU Y L, KANG F , et al. Rare earth-free composites of carbon dots/metal-organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019,7(8):2207-2211.
DOI URL |
[7] |
LI H, LIU H B, TAO X M , et al. Novel single component tri-rare-earth emitting MOF for warm white light LEDs. Dalton Transaction, 2018,47(25):8427-8433.
DOI URL |
[8] |
YOUSAF A, ARIF A M, XU N , et al. A triazine-functionalized nanoporous metal-organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln 3+ ion encapsulation. Journal of Materials Chemistry C , 2019,7(29):8861-8867.
DOI URL |
[9] |
YIN J, ZHANG G, PENG C , et al. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chemical Communications , 2019,55(12):1702-1705.
DOI URL PMID |
[10] |
CHEN Y, YU B, CUI Y , et al. Core-shell structured cyclodextrin metal-organic frameworks with hierarchical dye encapsulation for tunable light emission. Chemistry of Materials, 2019,31(4):1289-1295.
DOI URL |
[11] |
SAMANTA D, VERMA P, ROY S , et al. Nanovesicular MOF with omniphilic porosity: bimodal functionality for white-light emission and photocatalysis by dye encapsulation. ACS Applied Materials & Interfaces , 2018,10(27):23140-23146.
DOI URL PMID |
[12] |
CUI Y, SONG T, YU J , et al. Dye encapsulated metal-organic framework for warm-white led with high color-rendering index. Advanced Functional Materials , 2015,25(30):4796-4802.
DOI URL |
[13] |
CAI H, LU W, YANG C , et al. Tandem Förster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks. Advanced Optical Materials, 2019,7(2):1801149-1801156.
DOI URL |
[14] |
WANG J, ZHANG Y, YU Y , et al. Spectrally flat white light emission based on red-yellow-green-blue dye-loaded metal-organic frameworks. Optical Materials , 2019,89:209-213.
DOI URL |
[15] |
WANG Z, WANG Z, LIN B , et al. Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Applied Materials & Interfaces , 2017,9(40):35253-35259.
DOI URL PMID |
[16] |
LIU J, ZHUANG Y, WANG L , et al. Achieving multicolor long- lived luminescence in dye-encapsulated metal-organic frameworks and its application to anticounterfeiting stamps. ACS Applied Materials & Interfaces , 2018,10(2):1802-1809.
DOI URL PMID |
[17] |
WEN Y, SHENG T, ZHU X , et al. Introduction of red-green-blue fluorescent dyes into a metal-organic framework for tunable white light emission. Advanced Materials , 2017,29(37):1700778.
DOI URL |
[18] | WANG Z, ZHU C Y, MO J T , et al. White-light emission from dual- way photon energy conversion in a dye-encapsulated metal-organic framework. Angewandte Chemie International Edition , 2019,131(29):9854-9859. |
TAO H, LI S, XU M , et al. Fluorospectrophotometric determination of trace amount of cobalt in TCM. PTCA(B. Chem. Anal.), 2013,49(04):413-416. |
[1] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | LI Jianjun, CHEN Fangming, ZHANG Lili, WANG Lei, ZHANG Liting, CHEN Huiwen, XUE Changguo, XU Liangji. Peroxymonosulfate Activation by CoFe2O4/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic [J]. Journal of Inorganic Materials, 2025, 40(4): 440-448. |
[4] | MU Shuang, MA Qin, ZHANG Yu, SHEN Xu, YANG Jinshan, DONG Shaoming. Oxidation Behavior of Yb2Si2O7 Modified SiC/SiC Mini-composites [J]. Journal of Inorganic Materials, 2025, 40(3): 323-328. |
[5] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
[6] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[7] | PAN Zesheng, YOU Yaping, ZHENG Ya, CHEN Haijie, WANG Lianjun, JIANG Wan. Stability of Phosphors for White LED Excitable by Violet Light [J]. Journal of Inorganic Materials, 2025, 40(3): 314-322. |
[8] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[9] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
[10] | LUAN Xingang, HE Dianwei, TU Jianyong, CHENG Laifei. 2D Plain and 3D Needle-punched C/SiC Composites: Low-velocity Impact Damage Behavior and Failure Mechanism [J]. Journal of Inorganic Materials, 2025, 40(2): 205-214. |
[11] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[12] | WANG Wenting, XU Jingjun, MA Ke, LI Meishuan, LI Xingchao, LI Tongqi. Oxidation Behavior at 1000-1300 ℃ in air of Ti2AlC-20TiB2 Synthesized by in-situ Reaction/Hot Pressing [J]. Journal of Inorganic Materials, 2025, 40(1): 31-38. |
[13] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[14] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[15] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||