Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (10): 1123-1129.DOI: 10.15541/jim20190642
Special Issue: 功能材料论文精选(二):发光材料(2020)
Previous Articles Next Articles
LIU Mingzhu1,2(),NIU Chuanwen1,2,ZHANG Huanhuan3,XING Yanjun1,2(
)
Received:
2019-12-18
Revised:
2020-02-02
Published:
2020-10-20
Online:
2020-03-06
About author:
LIU Mingzhu (1993-), female, Master candidate. E-mail: mingzhu@163.com
Supported by:
CLC Number:
LIU Mingzhu, NIU Chuanwen, ZHANG Huanhuan, XING Yanjun. Preparation and Luminescence Properties of Cd-based MOF/Dye Composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1123-1129.
Sample | CA addition (mol/1×10-3mol Cd2+) | Addition ratio | ||
---|---|---|---|---|
CA/RhB | CA/CV | |||
MOF/CA | MOF/CA-1 | 1.25×10-7 | - | - |
MOF/CA-2 | 2.50×10-7 | - | - | |
MOF/CA-3(MOF/CA10) | 5.00×10-7 | - | - | |
MOF/CA-4 | 1.00×10-6 | - | - | |
MOF/CA-5 | 2.00×10-6 | - | - | |
MOF/CA+RhB | MOF/CA5+RhB | 2.5×10-7 | 5 : 1 | - |
MOF/CA10+RhB | 5.0×10-7 | 10 : 1 | - | |
MOF/CA20+RhB | 1.0×10-6 | 20 : 1 | - | |
MOF/CA+CV | MOF/CA5+CV | 2.5×10-7 | - | 5 : 1 |
MOF/CA10+CV | 5.0×10-7 | - | 10 : 1 | |
MOF/CA20+CV | 1.0×10-6 | - | 20 : 1 | |
MOF/CA+RhB+CV | MOF/CA1+RhB+CV | 5.0×10-8 | 1 : 1 | 1 : 1 |
MOF/CA3+RhB+CV | 1.5×10-7 | 3 : 1 | 3 : 1 | |
MOF/CA5+RhB+CV | 1.5×10-7 | 5 : 1 | 5 : 1 | |
MOF/CA10+RhB+CV | 5.0×10-7 | 10 : 1 | 10 : 1 | |
MOF/CA20+RhB+CV | 1.0×10-6 | 20 : 1 | 20 : 1 |
Table 1 Sample abbreviation and dye addition amount
Sample | CA addition (mol/1×10-3mol Cd2+) | Addition ratio | ||
---|---|---|---|---|
CA/RhB | CA/CV | |||
MOF/CA | MOF/CA-1 | 1.25×10-7 | - | - |
MOF/CA-2 | 2.50×10-7 | - | - | |
MOF/CA-3(MOF/CA10) | 5.00×10-7 | - | - | |
MOF/CA-4 | 1.00×10-6 | - | - | |
MOF/CA-5 | 2.00×10-6 | - | - | |
MOF/CA+RhB | MOF/CA5+RhB | 2.5×10-7 | 5 : 1 | - |
MOF/CA10+RhB | 5.0×10-7 | 10 : 1 | - | |
MOF/CA20+RhB | 1.0×10-6 | 20 : 1 | - | |
MOF/CA+CV | MOF/CA5+CV | 2.5×10-7 | - | 5 : 1 |
MOF/CA10+CV | 5.0×10-7 | - | 10 : 1 | |
MOF/CA20+CV | 1.0×10-6 | - | 20 : 1 | |
MOF/CA+RhB+CV | MOF/CA1+RhB+CV | 5.0×10-8 | 1 : 1 | 1 : 1 |
MOF/CA3+RhB+CV | 1.5×10-7 | 3 : 1 | 3 : 1 | |
MOF/CA5+RhB+CV | 1.5×10-7 | 5 : 1 | 5 : 1 | |
MOF/CA10+RhB+CV | 5.0×10-7 | 10 : 1 | 10 : 1 | |
MOF/CA20+RhB+CV | 1.0×10-6 | 20 : 1 | 20 : 1 |
Fig. 4 Fluorescence emission spectra of MOF and MOF/CA (a); CIE chromaticity diagram (b)( where 1: MOF/CA-1; 2: MOF/CA-2; 3: MOF/CA-3; 4: MOF/CA-4; 5: MOF/CA-5) and optical photos under daylight and UV light at 365 nm (c)
Fig. 5 Fluorescence emission spectra of MOF/CA+RhB (a), CIE chromaticity diagram (b) (where 1: MOF/CA5+RhB; 2: MOF/CA10+RhB; 3: MOF/CA20+RhB) and optical photos under sunlight and UV light at 365 nm (c)
Fig. 6 Fluorescence emission spectra of MOF/CA+CV (a), CIE chromaticity diagram (b)(where 4: MOF/CA5+CV; 5: MOF/CA10+CV; 6: MOF/CA20+CV)and optical photos under sunlight and UV light at 365 nm (c)
Fig. 7 Fluorescence emission spectra of MOF/CA+RhB+CV (a), CIE chromaticity diagram (b), where 7: MOF/CA20+RhB+CV; 8: MOF/CA10+RhB+CV; 9: MOF/CA5+RhB+CV; 10: MOF/CA3+RhB+CV; 11: MOF/CA1+RhB+CV; 1, 2, 3 are CIE chromaticity coordinates of MOF/CV+RhB in Fig. 5(b); 4, 5 and 6 are CIE chromaticity coordinates of MOF/CA+CV in Fig. 6(b), and optical photos under sunlight and UV light at 365 nm (c)
Sample | Changes of intensity of characteristic fluorescence peak R | |||
---|---|---|---|---|
RMOF | RCA | RRhB | RCV | |
MOF/CA1+RhB+CV | 1.00 | 1.00 | 1.00 | 1.00 |
MOF/CA3+RhB+CV | 0.71 | 1.79 | 0.92 | 0.95 |
MOF/CA5+RhB+CV | 0.70 | 2.70 | 1.28 | 1.17 |
MOF/CA10+RhB+CV | 0.52 | 4.31 | 1.69 | 1.38 |
MOF/CA20+RhB+CV | 0.28 | 3.15 | 1.30 | 1.12 |
Table 2 Changes of intensity of characteristic fluorescence peaks(R)in MOF/CA+RhB+CV
Sample | Changes of intensity of characteristic fluorescence peak R | |||
---|---|---|---|---|
RMOF | RCA | RRhB | RCV | |
MOF/CA1+RhB+CV | 1.00 | 1.00 | 1.00 | 1.00 |
MOF/CA3+RhB+CV | 0.71 | 1.79 | 0.92 | 0.95 |
MOF/CA5+RhB+CV | 0.70 | 2.70 | 1.28 | 1.17 |
MOF/CA10+RhB+CV | 0.52 | 4.31 | 1.69 | 1.38 |
MOF/CA20+RhB+CV | 0.28 | 3.15 | 1.30 | 1.12 |
[1] |
MONDAL T, MONDAL S, BOSE S , et al. Pure white light emission from a rare earth-free intrinsic metal-organic framework and its application in a WLED. Journal of Materials Chemistry C, 2018,6(3):614-621.
DOI URL |
[2] |
DING Y, ZHENG J, WANG J , et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. Journal of Materials Chemistry C , 2019,7(6):1502-1509.
DOI URL |
[3] |
YING L, HO C L, WU H , et al. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Advanced Materials , 2014,26(16):2459-2473.
DOI URL |
[4] |
WANG A, GUO Y, ZHOU Z , et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chemical Science , 2019,10(17):4573-4579.
DOI URL PMID |
[5] |
ZHOU Z, LI Q, HAN Y , et al. A highly connected (5,5,18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission. RSC Advances, 2015,5(118):97831-97835.
DOI URL |
[6] |
WANG A, HOU Y L, KANG F , et al. Rare earth-free composites of carbon dots/metal-organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019,7(8):2207-2211.
DOI URL |
[7] |
LI H, LIU H B, TAO X M , et al. Novel single component tri-rare-earth emitting MOF for warm white light LEDs. Dalton Transaction, 2018,47(25):8427-8433.
DOI URL |
[8] |
YOUSAF A, ARIF A M, XU N , et al. A triazine-functionalized nanoporous metal-organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln 3+ ion encapsulation. Journal of Materials Chemistry C , 2019,7(29):8861-8867.
DOI URL |
[9] |
YIN J, ZHANG G, PENG C , et al. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chemical Communications , 2019,55(12):1702-1705.
DOI URL PMID |
[10] |
CHEN Y, YU B, CUI Y , et al. Core-shell structured cyclodextrin metal-organic frameworks with hierarchical dye encapsulation for tunable light emission. Chemistry of Materials, 2019,31(4):1289-1295.
DOI URL |
[11] |
SAMANTA D, VERMA P, ROY S , et al. Nanovesicular MOF with omniphilic porosity: bimodal functionality for white-light emission and photocatalysis by dye encapsulation. ACS Applied Materials & Interfaces , 2018,10(27):23140-23146.
DOI URL PMID |
[12] |
CUI Y, SONG T, YU J , et al. Dye encapsulated metal-organic framework for warm-white led with high color-rendering index. Advanced Functional Materials , 2015,25(30):4796-4802.
DOI URL |
[13] |
CAI H, LU W, YANG C , et al. Tandem Förster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks. Advanced Optical Materials, 2019,7(2):1801149-1801156.
DOI URL |
[14] |
WANG J, ZHANG Y, YU Y , et al. Spectrally flat white light emission based on red-yellow-green-blue dye-loaded metal-organic frameworks. Optical Materials , 2019,89:209-213.
DOI URL |
[15] |
WANG Z, WANG Z, LIN B , et al. Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Applied Materials & Interfaces , 2017,9(40):35253-35259.
DOI URL PMID |
[16] |
LIU J, ZHUANG Y, WANG L , et al. Achieving multicolor long- lived luminescence in dye-encapsulated metal-organic frameworks and its application to anticounterfeiting stamps. ACS Applied Materials & Interfaces , 2018,10(2):1802-1809.
DOI URL PMID |
[17] |
WEN Y, SHENG T, ZHU X , et al. Introduction of red-green-blue fluorescent dyes into a metal-organic framework for tunable white light emission. Advanced Materials , 2017,29(37):1700778.
DOI URL |
[18] | WANG Z, ZHU C Y, MO J T , et al. White-light emission from dual- way photon energy conversion in a dye-encapsulated metal-organic framework. Angewandte Chemie International Edition , 2019,131(29):9854-9859. |
TAO H, LI S, XU M , et al. Fluorospectrophotometric determination of trace amount of cobalt in TCM. PTCA(B. Chem. Anal.), 2013,49(04):413-416. |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[3] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[4] | HE Sizhe, WANG Junzhou, ZHANG Yong, FEI Jiawei, WU Aimin, CHEN Yifeng, LI Qiang, ZHOU Sheng, HUANG Hao. Fe/Submicron FeNi Soft Magnetic Composites with High Working Frequency and Low Loss [J]. Journal of Inorganic Materials, 2024, 39(8): 871-878. |
[5] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[6] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[7] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[8] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | LI Guangyu, YUE Yifan, WANG Bo, ZHANG Chengyu, SUO Tao, LI Yulong. Damage of 2D-SiC/SiC Composites under Projectile Impact and Tensile Properties after Impact [J]. Journal of Inorganic Materials, 2024, 39(5): 494-500. |
[13] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[14] | GUAN Haoyang, ZHANG Li, JING Kaikai, SHI Weigang, WANG Jing, LI Mei, LIU Yongsheng, ZHANG Chengyu. Interfacial Mechanical Properties of the Domestic 3rd Generation 2.5D SiCf/SiC Composite [J]. Journal of Inorganic Materials, 2024, 39(3): 259-266. |
[15] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||