Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 492-496.DOI: 10.15541/jim20200346
• RESEARCH ARTICLE • Previous Articles Next Articles
XIANG Hui1,2(), QUAN Hui1, HU Yiyuan1, ZHAO Weiqian1, XU Bo2,3, YIN Jiang2
Received:
2020-06-22
Revised:
2020-09-30
Published:
2021-05-20
Online:
2021-04-19
About author:
XIANG Hui(1986-), female, associate professor. E-mail:hxiang0717@163.com
Supported by:
CLC Number:
XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN[J]. Journal of Inorganic Materials, 2021, 36(5): 492-496.
Fig. 1 Crystal structure and phonon spectra of monolayer g-ZnO and g-GaN The top view (a) and side view (b) of monolayers g-ZnO and g-GaN, where oxygen and nitrogen atoms are blue, while zinc and gallium atoms are gray. The axes and direction of piezoelectric polarization are labeled as P. The phonon dispersion calculations for monolayers g-ZnO (c) and g-GaN (d) are also depicted, respectivelyColorful figures are available on website
Material | Clamped-ion | Relaxed-ion | ||||
---|---|---|---|---|---|---|
C11 | C12 | Δ | C11 | C12 | Δ | |
g-ZnO | 109 | 35 | 75 | 86 | 57 | 29 |
g-GaN | 157 | 37 | 120 | 135 | 58 | 77 |
h-BN[ | 300 | 53 | 247 | 291 | 62 | 229 |
Graphene[ | - | - | - | 358 | 60 | 298 |
Table 1 Elastic stiffness constants C11 and C12 (N·m-1) of Clamped-ion and Relaxed-ion components for monolayers g-ZnO and g-GaN) against that of h-BN and graphene (Δ= C11 - C12)
Material | Clamped-ion | Relaxed-ion | ||||
---|---|---|---|---|---|---|
C11 | C12 | Δ | C11 | C12 | Δ | |
g-ZnO | 109 | 35 | 75 | 86 | 57 | 29 |
g-GaN | 157 | 37 | 120 | 135 | 58 | 77 |
h-BN[ | 300 | 53 | 247 | 291 | 62 | 229 |
Graphene[ | - | - | - | 358 | 60 | 298 |
Material | Clamped-ion | Relaxed-ion | ||
---|---|---|---|---|
e11 | d11 | e11 | d11 | |
g-ZnO | 1.7 | 2.3 | 2.7 | 9.4 |
g-GaN | 2.4 | 2.0 | 1.7 | 2.2 |
Bulk ZnO[ | - | - | - | 9.9 (d33) |
Bulk GaN[ | - | - | - | 3.1 (d33) |
h-BN[ | 3.7 | 1.5 | 1.4 | 0.6 |
Table 2 Calculated Clamped- and Relaxed-ion e11 (×10-10, C·m-1) and d11 (pm·V-1) of g-ZnO and g-GaN against piezoelectric coefficients of wurtzite bulk and graphene-like monolayer BN (h-BN)
Material | Clamped-ion | Relaxed-ion | ||
---|---|---|---|---|
e11 | d11 | e11 | d11 | |
g-ZnO | 1.7 | 2.3 | 2.7 | 9.4 |
g-GaN | 2.4 | 2.0 | 1.7 | 2.2 |
Bulk ZnO[ | - | - | - | 9.9 (d33) |
Bulk GaN[ | - | - | - | 3.1 (d33) |
h-BN[ | 3.7 | 1.5 | 1.4 | 0.6 |
Fig. 4 Total densities of states (TDOS) and partial DOS (PDOS) of monolayers g-ZnO (a) and g-GaN (b) under the conditions of 1% tensile strain along the armchair direction Colorful figures are available on website
[1] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004,432(7013):84-87.
DOI URL PMID |
[2] | ZHAO M H, WANG Z L, MAO S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 2004,4(4):587-590. |
[3] | WANG Z L. Nanostructures of zinc oxide. Materials Today, 2004,7(6):26-33. |
[4] |
WU W, WANG L, LI Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014,514:470.
URL PMID |
[5] |
DAI M, WANG Z, WANG F, et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Letters, 2019,19(8):5410-5416.
DOI URL PMID |
[6] | DUERLOO K A N, ONG M T, REED E J. Intrinsic piezoelectricity in two-dimensional materials. The Journal of Physical Chemistry Letters, 2012,3(19):2871-2876. |
[7] | LI W, LI J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Research, 2015,8(12):3796-3802. |
[8] | PRODHOMME P Y, BEYA-WAKATA A, BESTER G. Nonlinear piezoelectricity in wurtzite semiconductors. Physical Review B, 2013,88(12):121304. |
[9] | JANOTTI A, VAN DE WALLE C G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009,72(12):126501. |
[10] | STRITE S, MORKOÇ H. GaN. AlN, and InN: a review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992,10(4):1237-1266. |
[11] |
ZHANG J, WANG C, BOWEN C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale, 2014,6(22):13314-13327.
URL PMID |
[12] |
ZHOU J, GU Y, FEI P,et al. Flexible piezotronic strain sensor. Nano Letters, 2008,8(9):3035-3040.
DOI URL PMID |
[13] |
AGRAWAL R, ESPINOSA H D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires: a first principles investigation. Nano Letters, 2011,11(2):786-790.
DOI URL PMID |
[14] |
MOGULKOC A, MOGULKOC Y, MODARRESI M, et al. Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers. Physical Chemistry Chemical Physics, 2018,20:28124-28134.
DOI URL PMID |
[15] |
TUSCHE C, MEYERHEIM H L, KIRSCHNER J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Physical Review Letters, 2007,99(2):026102.
DOI URL PMID |
[16] | TOPSAKAL M, CAHANGIROV S, BEKAROGLU E, et al. First-principles study of zinc oxide honeycomb structures. Physical Review B, 2009,80(23):235119. |
[17] | SHU H, NIU X, DING X, et al. Effects of strain and surface modificaion on stability, electronic and optical properties of GaN monolayer. Applied Surface Science, 2019,479:475-481. |
[18] | KRESSE G, FURTHMÜLLER J. Efficiency ofab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996,6(1):15-50. |
[19] | KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996,54(16):11169. |
[20] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865.
DOI URL PMID |
[21] | VANDERBILT D. Berry-phase theory of proper piezoelectric response. Journal of Physics and Chemistry of Solids, 2000,61(2):147-151. |
[22] | HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 2003,118(18):8207-8215. |
[23] |
HONG H K, JO J, HWANG D, et al. Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Letters, 2017,17:120-127.
DOI URL PMID |
[24] | PENG Q, LIANG C, JI W, et al. A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer. Computational Materials Science, 2013,68:320-324. |
[25] | PENG Q, LIANG C, JI W, et al. Mechanical properties of g-GaN: a first principles study. Applied Physics A, 2013,113(2):483-490. |
[26] | WEI X, FRAGNEAUD B, MARIANETTI C A, et al. Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Physical Review B, 2009,80(20):205407. |
[27] | LUENG C M, CHAN H L W, SURYA C, et al. Piezoelectric coefficient of aluminum nitride and gallium nitride. Journal of Applied Physics, 2000,88(9):5360-5363. |
[28] |
XU S, QIN Y, XU C, et al. Self-powered nanowire devices. Nature Nanotechnology, 2010,5(5):366-373.
DOI URL PMID |
[1] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[2] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[3] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. |
[4] | LU Hao, XU Shengrui, HUANG Yong, CHEN Xing, XU Shuang, LIU Xu, WANG Xinhao, GAO Yuan, ZHANG Yachao, DUAN Xiaoling, ZHANG Jincheng, HAO Yue. Epitaxy Single Crystal GaN on AlN Prepared by Plasma-enhanced Atomic Layer Deposition [J]. Journal of Inorganic Materials, 2024, 39(5): 547-553. |
[5] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[6] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[7] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[8] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[9] | MENG Bo, XIAO Gang, WANG Xiuli, TU Jiangping, GU Changdong. Ionic Thermal Synthesis and Reversible Heat Storage Performance of Manganese-based Oxides [J]. Journal of Inorganic Materials, 2023, 38(7): 793-799. |
[10] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[11] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[12] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[13] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[14] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. |
[15] | WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 617-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||