 
 Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 923-930.DOI: 10.15541/jim20190530
• RESEARCH PAPER • Previous Articles Next Articles
					
													ZHANG Dongshuo1,2( ),CAI Hao1,GAO Kaiyin1,MA Zichuan1,2(
),CAI Hao1,GAO Kaiyin1,MA Zichuan1,2( )
)
												  
						
						
						
					
				
Received:2019-10-16
															
							
																	Revised:2019-12-27
															
							
															
							
																	Published:2020-08-20
															
							
																	Online:2020-03-03
															
						Supported by:CLC Number:
ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites[J]. Journal of Inorganic Materials, 2020, 35(8): 923-930.
| Catalyst | Specific surface area/(m2?g-1) | Pore volume/ (cm3?g-1) | Pore size/nm | 
|---|---|---|---|
| SOB-3-4 | 31.29 | 0.32 | 20.40 | 
| ZnO | 24.39 | 0.24 | 19.74 | 
Table 1 Specific surface area, pore volume and pore size of catalysts
| Catalyst | Specific surface area/(m2?g-1) | Pore volume/ (cm3?g-1) | Pore size/nm | 
|---|---|---|---|
| SOB-3-4 | 31.29 | 0.32 | 20.40 | 
| ZnO | 24.39 | 0.24 | 19.74 | 
| [1] | YANG L L, WEI Q S, LI Z C, et al. Effects of dissolved organic matter (DOM) on photodegradation of metronidazole. Guangdong Chemical Industry, 2016,43(14):13-15. | 
| [2] | INGERSLEV F, TORÄNG L, LOKE M L, et al. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere, 2001,44(4):865-872. DOI URL | 
| [3] | MÉNDEZ-DÍAZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. Journal of Colloid and Interface Science, 2010,345(2):481-490. DOI URL PMID | 
| [4] | RIVERA-UTRILLA J, PRADOS-JOYA G, SÁNCHEZ-POLO M, et al. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of Hazardous Materials, 2009,170(1):298-305. DOI URL PMID | 
| [5] | FANG Z Q, QIU X Q, CHEN J H, et al. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Applied Catalysis B: Environmental, 2010,100(1/2):221-228. DOI URL | 
| [6] | JOHNSON M B, MEHRVAR M. Aqueous metronidazole degradation by UV/H2O2 process in single-and multi-lamp tubular photoreactors: kinetics and reactor design. Industrial and Engineering Chemistry Research, 2008,47(17):6525-6537. DOI URL | 
| [7] | JOSS A, ZABCZYNSKI S, GÖBEL A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Research, 2006,40(8):1686-1696. DOI URL PMID | 
| [8] | CARBALLA M, OMIL F, TERNES T, et al. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 2007,41(10):2139-2150. DOI URL | 
| [9] | HÖFL C, SIGL G, SPECHT O, et al. Oxidative degradation of aox and cod by different advanced oxidation processes: a comparative study with two samples of a pharmaceutical wastewater. Water Science and Technology, 1997,35(4):257-264. DOI URL | 
| [10] | AMMAR H B, BRAHIM M B, ABDELHÉDI R, et al. Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 2016,420:222-227. DOI URL | 
| [11] | LUO T T, WANG M, TIAN X K, et al. Safe and efficient degradation of metronidazole using highly dispersed beta-FeOOH on palygorskite as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere, 2019,236:1-7. | 
| [12] | SHEMER H, KUNUKCU Y K, LINDEN K G. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 2006,63(2):269-276. DOI URL | 
| [13] | XIONG Z H, CHEN Z X, LIU J M. Comparison of metronidazole degradation by different advanced oxidation processes in low concentration aqueous solutions. Chinese Journal of Environmental Engineering, 2009,3(3):465-469. | 
| [14] | WANG X Y, WANG A Q, MA J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. Journal of Hazardous Materials, 2017,336:81-92. DOI URL PMID | 
| [15] | RAI S C, WANG K, DING Y, et al. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap Type-II ZnO/ZnS core/shell nanowire array. ACS Nano, 2015,9(6):6419-6427. DOI URL PMID | 
| [16] | QI K Z, CHENG B, YU J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 2017,727:792-820. DOI URL | 
| [17] | GHOLAMI P, DINPAZHOH L, KHATAEE A, et al. Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: synergy study, effect of parameters and phytotoxicity evaluation. Ultrasonics - Sonochemistry, 2019,55:44-56. | 
| [18] | YANG Y, ZHUANG Y, HE Y H, et al. Fine tuning of the dimensionality of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Research, 2010,3(8):581-593. DOI URL | 
| [19] | QIAO Z, YAN T J, ZHANG X F, et al. Low-temperature hydrothermal synthesis of Zn2SiO4 nanostructures and the novel photocatalytic application in wastewater treatment. Catalysis Communications, 2018,106:78-81. DOI URL | 
| [20] | XIE J, LI P, LI Y T, et al. Solvent-induced growth of ZnO particles at low temperature. Materials Letters, 2008,62(17/18):2814-2816. DOI URL | 
| [21] | 陈嘉川, 刘温霞, 杨桂花, 等. 造纸植物资源化学. 北京: 科学出版社, 2012: 68-71. | 
| [22] | LI Y, HUA Y X, LIN Z Y. A novel process for synthesis of zinc silicate. Journal of Materials and Metallurgy, 2007,6(3):224-229. | 
| [23] | ZU L H, QIN Y, YANG J H. In situ synergistic crystallization-induced synthesis of novel Au nanostar-encrusted ZnO mesocrystals with high-quality heterojunctions for high-performance gas sensors. Journal of Materials Chemistry A, 2015,3(19):10209-10218. DOI URL | 
| [24] | LUDI B, NIEDERBERGER M. Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Transactions, 2013,42(35):12554-12568. DOI URL | 
| [25] | WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review. Renewable and Sustainable Energy Reviews, 2019,108:423-440. DOI URL | 
| [26] | LI S J, MA Z C, WANG L, et al. Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange. Science in China Series B:Chemistry, 2008,51(2):179-185. | 
| [27] | YU C L, YANG K, YU J C, et al. Hydrothermal synthesis and photocatalytic performance of Bi2WO6/ZnO heterojunction photocatalysts. Journal of Inorganic Materials, 2011,26(11):1157-1163. DOI URL | 
| [28] | LIANG C, LIU Y, LI K, et al. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation. Separation and Purification Technology, 2017,188:105-111. DOI URL | 
| [29] | PLGNATELLO J J. Dark and photoassisted Fe 3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide . Environmental Science and Technology, 1992,26:944-951. DOI URL | 
| [30] | DÜKKANCI M, GÜNDÜZ G, YILMAZ S, et al. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. Journal of Hazardous Materials, 2010,181(1/2/3):343-350. DOI URL PMID | 
| [1] | FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481-488. | 
| [2] | JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397-404. | 
| [3] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. | 
| [4] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. | 
| [5] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. | 
| [6] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. | 
| [7] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. | 
| [8] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. | 
| [9] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. | 
| [10] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. | 
| [11] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. | 
| [12] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. | 
| [13] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. | 
| [14] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. | 
| [15] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||