Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (3): 269-274.DOI: 10.15541/jim20160345
• Orginal Article • Previous Articles Next Articles
SONG Jia, XU Ying, MO Yan-Ping, LI Yong-An
Received:
2016-05-30
Revised:
2016-09-16
Published:
2017-03-20
Online:
2017-02-24
About author:
SONG Jia. E-mail: doudousj@whut.edu.cn
CLC Number:
SONG Jia, XU Ying, MO Yan-Ping, LI Yong-An. Enhanced Photocatalytic Activity of Bi2WO6 by the Synergistic Action of Ti(IV) and Graphene Bi-cocatalysts[J]. Journal of Inorganic Materials, 2017, 32(3): 269-274.
Fig. 7 Photocatalytic performance of the decomposition of MO by different samples(a) Bi2WO6; (b) Ti(IV)/Bi2WO6; (c) rGO/Bi2WO6; (d) Ti(IV)(1%)- rGO/Bi2WO6; (e) Ti(IV)(3%)-rGO/Bi2WO6; (f) Ti(IV)-rGO/Bi2WO6; (g) Ti(IV)(7%)-rGO/Bi2WO6
Fig. 9 The photocatalytic performance of Ti(IV)-rGO/Bi2 WO6 for the decomposition of MO and phenol and recycled performance for the degradation of phenol(insert)
[1] | YU S H, LIU B, MO M S, et al.General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach.Advanced Functional Materials, 2003, 13(13): 639-647. |
[2] | NAGIRNYI V, KIM M, KOTLOV A, et al. Separation of excitonic and electron-hole processes in metal tungstates. Journal of Luminescence, 2003, 102-103(5): 597-603. |
[3] | YANG Y G, WANG Z, XU J H, et al.Influence of surfactants on morphology of lead tungstate crystalline.Journal of Synthetic Crystals, 2008, 37(1): 240-242. |
[4] | HE J Y, WANG W M, LONG F, et al.Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation.Materials Science and Engineering: B, 2012, 177(12): 967-974. |
[5] | GUI M S, WANG P F, YUAN D, et al.Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalysts.Chinese Journal of Inorganic Chemistry, 2013, 29(10): 2057-2064. |
[6] | HU S P, XU C Y, ZHEN L.Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties.Materials Letters, 2013, 95(3): 117-120. |
[7] | WANG X, CHANG L, WANG J, et al.Surfactant-free hydrothermal synthesis of flower-like Bi2WO6 with enhanced solar-light- induced photocatalytic performance.Micro & Nano Letters, 2012, 7(11): 1129-1132. |
[8] | LAI K, ZHU Y, LU J, et al.N- and Mo-doping Bi2WO6 in photo-catalytic water splitting.Computational Materials Science, 2013, 67(4): 88-92. |
[9] | ZHANG L, WANG W Z, SHANG M, et al.Bi2WO6@carbon/ Fe3O4 microspheres: preparation, growth mechanism and application in water treatment.Journal of Hazardous Materials, 2009, 172(2/3): 1193-1197. |
[10] | COLÓN G, LÓPEZ S M, HIDALGO M C, et al. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation.Chemical Communications, 2010, 46(40): 4809-4811. |
[11] | WANG C Y, ZHU L Y, CHANG C, et al.Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal method and its photocatalytic degradation of bisphenol A.Catalysis Communications, 2013, 37(13): 92-95. |
[12] | ZHOU Y, ZHANG Q, LIN Y H, et al.One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: in situ growth monitoring and photocatalytic activity studies.Science China Chemistry, 2013, 56(4): 435-442. |
[13] | ZHANG N, YANG M Q, LIU S Q, et al.Waltzing with the versatile platform of graphene to synthesize composite photocatalysts.Chemical Reviews, 2015, 115(18): 10307-10377. |
[14] | THANASIS GEORGIOU, RASHID JALIL, BELLE BRANSON D, et al.Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics.Nature Nanotechnology, 2013, 8(2): 100-103. |
[15] | HUANG X, QI X Yi, BOEY F, et al.Graphene-based composites.Chem. Soc. Rev., 2012, 41(2): 666-686. |
[16] | LI H, SONG Z N, ZHANG X J, et al.Ultrathin, molecular-sieving grapheme oxide membranes for selective hydrogen separation.Science, 2013, 342(6154): 95-98. |
[17] | YANG J, VOIRY D, AHN S J,et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced grapheme oxide as catalysts for enhanced hydrogen evolution.Angew. Chem. Int. Ed.2013, 52(51): 13751-13754. |
[18] | GUO D, WANG P, ZHENG Q Y, et al.One-step synthesis of flower-like Bi2WO6-rGO composite photocatalysts.Journal of Inorganic Materials, 2014, 29(11): 1193-1198. |
[19] | ZHANG F X, YAMAKATA A, MAEDA K, et al.Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. Journal of the American Chemical Society, 2012, 134(20): 8348-8351. |
[20] | SHENG J Y, LI X J, XU Y M.Generation of H2O2 and OH radicals on Bi2WO6 for phenol.ACS Catalysis, 2014, 4(3): 732-737. |
[21] | TOWNSEND T K, BROWNING N D, OSTERLOH F E.Nanoscale strontium titanate photocatalysts for overall water splitting.ACS Nano, 2012, 6(8): 7420-7426. |
[22] | TOWNSEND T K, BROWNING N D, OSTERLOH F E.Overall photocatalytic water splitting with NiOx-SrTiO3 - a revised mechanism.Energy & Environmental Science, 2012, 5(11): 9543-9550. |
[23] | HIGASHI M, DOMEN K, ABE R.Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation.J. Am. Chem. Soc., 2012, 134(16): 6968-6971. |
[24] | LIU M, INDE R, NISHIKAWA M, et al.Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts.ACS Nano, 2014, 8(7): 7229-7238. |
[25] | EISENBERG D, AHN H S, BARD A J.Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide.J. Am. Chem. Soc., 2014, 136(40): 14011-14014. |
[26] | HU S, SHANER M R, BEARDSLEE J A, et al.Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.Science, 2014, 344(6187), 1005-1009. |
[27] | YU H G, CHEN W Y, WANG X F, et al.Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti(IV) and Fe(III) cocatalysts.Applied Catalysis B: Environmental, 2016, 187: 163-170. |
[28] | WANG P, WANG J, WANG X F, et al. One-step synthesis of easy- recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2013, 132-133(12): 452-459. |
[29] | ZHANG G Y, FENG Y, WU Q S, et al.Facile fabrication of flower-shaped Bi2WO6 superstructures and visible-light-driven photocatalytic performance.Materials Research Bulletin, 2012, 47(8): 1919-1924. |
[30] | MA H W, SHEN J F, SHI M, et al. Significant enhanced performance for rhodamine B, phenol and Cr(VI) removal by Bi2WO6 nanocomposites via reduced graphene oxide modification. Applied Catalysis B: Environmental, 2012, 121-122: 198-205. |
[31] | SUN S M, WANG W Z, ZHANG L.Bi2WO6 quantum dots decorated reduced grapheme oxide: Improved charge separation and enhanced photoconversion efficiency.Journal of Physical Chemistry C, 2013, 117(18): 9113-9120. |
[32] | RANGEL R, BARTOLO-PÉREZ P, Gómez-Cortés A, et al. Comparison Between γ-Bi2MoO6 and Bi2WO6 catalysts in the CO Oxidation.Journal of Materials Synthesis & Processing, 2001, 9(4): 207-212. |
[33] | YU M, LIU P R, SUN Y J, et al.Fabrication and characterization of graphene-Ag nano particles composites.Journal of Inorganic Materials, 2012, 372(1): 128-131. |
[34] | CHEN Y, LIU G C, LI Z Y, et al.Citric acid-assisted hydrothermal synthesis of Bi2WO6 nanosheets for highly efficient degradation of methyl orange under visible light irradiation.Chinese Journal of Catalysis, 2011, 32(10): 1631-1638. |
[35] | XU Y, MO Y P, TIAN J, et al.The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogendoped graphene/TiO2 nanocomposites.Applied Catalysis B: Environmental, 2016, 181: 810-817. |
[36] | YU H G, LIU R, WANG X F, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Applied Catalysis B: Environmental, 2012, 111-112(6): 326-333. |
[37] | SUN Q, YU H G, WANG X F, et al.Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance.Dalton Transactions, 2015, 44(32): 14532-14539. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[4] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[5] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[6] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[7] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[8] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[9] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[10] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[11] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[12] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[13] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[14] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[15] | LI Hao, TANG Zhihong, ZHUO Shangjun, QIAN Rong. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO [J]. Journal of Inorganic Materials, 2021, 36(12): 1277-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||