| [1] | YU Y G, CHEN G, ZHOU Y S, et al.Recent advances in rare- earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: a review.Journal of Rare Earths, 2015, 33(5): 453-462. | 
																													
																							| [2] | LI X H, FAN T X.Artificial photosynthesis.Progress in Chemistry, 2011, 23(9): 1842-1853. | 
																													
																							| [3] | COLMENARES J C, LUQUE R.Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds.Chemical Society Reviews, 2014, 43(3): 765-778. | 
																													
																							| [4] | WEN F, SHANG G.Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer.The Journal of Physical Chemistry B, 2002, 106(47): 12227-12230. | 
																													
																							| [5] | ZHANG D, YANG M.Band structure engineering of TiO2 nanowires by n-p co-doping for enhanced visible-light photoelectrochemical water-splitting.Physical Chemistry Chemical Physics, 2013, 15(42): 18523-18529. | 
																													
																							| [6] | MELVIN A A, ILLATH K, DAS T, et al.M-Au/TiO2 (M=Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces.Nanoscale, 2015, 7(32): 13477-13488. | 
																													
																							| [7] | DHANALAKSHMI K B, LATHA S, ANANDAN S, et al.Dye sensitized hydrogen evolution from wate.International Journal of Hydrogen Energy, 2001, 26(7): 669-674. | 
																													
																							| [8] | DHAS R C, VENKATESH R, JOTHIVENKATACHALAM K, et al.Visible light driven photocatalytic degradation of Rhodamine B and direct red using cobalt oxide nanoparticles.Ceramics International, 2015, 41(8): 9301-9313. | 
																													
																							| [9] | DAI G, LIU S, LIANG Y, et al.Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co3O4/TiO2 nanotube arrays.Applied Surface Science, 2013, 264(4): 157-161. | 
																													
																							| [10] | WANG Y F, HSIEH M C, LEE J F, et al. Nonaqueous synthesis of CoOx/TiO2 nanocomposites showing high photocatalytic activity of hydrogen generation. Applied Catalysis B: Environmental, 2013, 142-143(5): 626-632. | 
																													
																							| [11] | CHEN Z, CHEN S, LI Y, et al.A recyclable and highly active Co3O4 nanoparticles/titanate nanowire catalyst for organic dyes degradation with peroxymonosulfate.Materials Research Bulletin, 2014, 57: 170-176. | 
																													
																							| [12] | LIU C, WANG L, TANG Y, et al.Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution.Applied Catalysis B: Environmental, 2015, 164: 1-9. | 
																													
																							| [13] | BAI B, ARANDIYAN H, LI J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4,2D-Co3O4, 3D-Co3O4 catalysts. Applied Catalysis B: Environmental, 2013, 142-143(5): 677-683. | 
																													
																							| [14] | CHEN Y W, CHEN H J, LEE D S. Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream. Journal of Molecular Catalysis A: Chemical, 2012, 363-364: 470-480. |