Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (6): 581-587.DOI: 10.15541/jim20150536
• Orginal Article • Previous Articles Next Articles
WANG Chao-Fei1, LU Shuang1, CHEN Hui-Long1, GONG Fei-Long1, GONG Yu-Yin1, LI Feng1,2
Received:
2015-11-02
Revised:
2015-12-29
Published:
2016-06-20
Online:
2016-05-19
About author:
WANG Chao-Fei. E-mail: zqwcf527@163.com
Supported by:
CLC Number:
WANG Chao-Fei, LU Shuang, CHEN Hui-Long, GONG Fei-Long, GONG Yu-Yin, LI Feng. One-pot Synthesis and Application in Asymmetric Supercapacitors of Mn3O4@RGO Nanocomposites[J]. Journal of Inorganic Materials, 2016, 31(6): 581-587.
Fig. 4 CV curves of Mn3O4@RGO nanocomposites (a) and RGO (c) measured in a three-electrode cell in 1 mol/L Na2SO4 electrolytes at different scan rates, and charge-discharge curves of supercapacitors constructed with Mn3O4@RGO nanocomposites (b) and RGO (d) in 1 mol/L Na2SO4 electrolytes measured at different current densities
Fig. 5 (a) Cyclic voltammograms at different scan rates, (b) charge/discharge curves and (c) specific capacitances at different current densities for Mn3O4@RGO//RGO asymmetric supercapacitor in 1 mol/L Na2SO4 electrolytes, and (d) charge-discharge cycling test of Mn3O4@RGO//RGO asymmetric supercapacitor at current density of 4 A/g. Inset shows the galvanostatic charge-discharge cyclic curves of the first twenty cycles at 4 A/g
[1] | YANG F, ZHAO M, SUN Q, et al.A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability.RSC Adv., 2015, 5(13): 9843-9847. |
[2] | RAJ B G S, RAMPRASAD R N R, ASIRI A M, et al. Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochimica Acta, 2015, 156(1): 127-137. |
[3] | SIMON P, GOGOTSI Y.Materials for electrochemical capacitors .Nat.Mater., 2008, 7(11): 845-854. |
[4] | ZHAO X, S NCHEZ B M, DOBSON P J, et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.Nanoscale, 2011, 3(3): 839-855. |
[5] | EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326-1330. |
[6] | JING M, WANG J, HOU H,et al. Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A, 2015, 3(32): 16824-16830. |
[7] | XIAO Y, CAO Y, GONG Y, et al.Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites . Journal of Power Sources, 2014, 246(8): 926-933. |
[8] | MEI J, ZHANG L.Novel MnOOH-graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors.Journal of Solid State Chemistry, 2015, 221: 178-183. |
[9] | CAO Y, XIAO Y, GONG Y, et al.One-pot synthesis of MnOOH nanorods on graphenefor asymmetric supercapacitors. Electrochem. Acta, 2014, 127: 200-207. |
[10] | FAN Z, YAN J, WEI T, et al.Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater., 2011, 21(12): 2366-2375. |
[11] | QU Q, SHI Y, TIAN S, et al.A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. J. Power Sources, 2009, 194(2): 1222-1225. |
[12] | GONG Y, GONG F, WANG C, et al.Porous and single crystalline Co3O4 nanospheres for pseudocapacitors with enhanced performance.RSC Adv., 2015, 5: 27266-27272. |
[13] | KHOMENKO V, RAYMUNDO-PINERO E, FRACKOWIAK E, et al.High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl.Phys.A, 2006, 82(4): 567-573. |
[14] | YU C, MASARAPU C, RONG J, et al.Stretchable supercapacitors based on buckled single-walled carbon‐nanotube macrofilms.Adv.Mater., 2009, 21(47): 4793-4797. |
[15] | LEI Z, ZHANG J, ZHAO X.Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem., 2012, 22(1): 153-160. |
[16] | LEE J W, HALL A S, KIM J D, et al.A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater., 2012, 24(6): 1158-1164. |
[17] | CHEN B, RAO G, WANG S, et al.Facile synthesis and characterization of Mn3O4 nanoparticles by auto-combustion method.Materials Letters, 2015, 154: 160-162. |
[18] | LIU Y, WANG W, WANG Y, et al.Binder-free three-dimensional porous Mn3O4 nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage. RSC.Advances, 2014, 4(31): 16374. |
[19] | QIAN W, CHEN Z, COTTINGHAM S, et al.Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem., 2012, 14(2): 371-377. |
[20] | XIA H, MENG Y S, LI X, et al.Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors.J. Mater. Chem., 2011, 21(39): 15521-15526. |
[21] | WANG D, LI Y, WANG Q, et al.Facile synthesis of porous Mn3O4 nanocrystal-graphene nanocomposites for electrochemical supercapacitors.Eur. J. Inorg. Chem., 2012, 2012(4): 628-635. |
[22] | SHE X, ZHANG X, LIU J, et al.Microwave-assisted synthesis of Mn3O4 nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors .Materials Research Bulletin, 2015, 70(2): 945-950. |
[23] | WANG H, CUI L F, YANG Y, et al.Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.J. Am. Chem. Soc., 2010, 132(40): 13978-13980. |
[24] | HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide.J. Am. Chem. Soc., 1958, 80: 1339-1340. |
[25] | XIAO Y, LIU S, LI F, et al.3D Hierarchical Co3O4 twin‐spheres with an urchin‐like structure: large‐scale synthesis, multistep‐splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater., 2012, 22(19): 4052-4059. |
[26] | PARK S, AN J, JUNG I, et al.Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents.Nano Lett., 2009, 9(4): 1593-1597. |
[27] | PHAM V H, CUONG T V, HUR S H, et al.Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone.J. Mater. Chem., 2011, 21(10): 3371-3377. |
[28] | BOSE V C, BIJU V.Structure, cation valence states and electrochemical properties of nanostructured Mn3O4.Materials Science in Semiconductor Processing, 2015, 35(7): 1-9. |
[29] | LI Y, LI X M.Facile treatment of wastewater produced in Hummer's method to prepare Mn3O4 nanoparticles and study their electrochemical performance in an asymmetric supercapacitor. RSC Adv., 2013, 3(7): 2398-2403. |
[30] | RAKHI R B, CHEN W, CHA D, et al.High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J. Mater. Chem., 2011, 21(40): 16197-16204. |
[31] | HU C C, TSOU T W.Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition.Electrochem. Commun., 2002, 4(2): 105-109. |
[32] | KHOMENKO V, RAYMUNDO-PI ERO E, B GUIN F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources, 2010, 195(13): 4234-4241. |
[33] | XIAO Y, ZHANG A, LIUA S, et al.Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. J. Power Sources, 2012, 219(12): 140-146. |
[34] | YAN J, FAN Z, SUN W, et al.Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density . Adv. Funct. Mater., 2012, 22(12): 2632-2641. |
[35] | LIU C L, CHANG K H, HU C C, et al.Microwave-assisted hydrothermal synthesis of Mn3O4 reduced graphene oxide composites for high power supercapacitors .J. Power Sources, 2012, 217(11): 184-192. |
[36] | ZHU Y, MURALI S, STOLLER M D, et al.Carbon-based supercapacitors produced by activation of graphene.Science, 2011, 332(6037): 1537-1541. |
[37] | DELL R.Batteries: fifty years of materials development.Solid State Ionics, 2000, 134(1): 139-158. |
[38] | WANG H, DAI H.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev., 2013, 42(7): 3088-3113. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[4] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[5] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[6] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[7] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[8] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[9] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[10] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[11] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[12] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[13] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[14] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[15] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||