 
 Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (8): 814-820.DOI: 10.15541/jim20130556
• Orginal Article • Previous Articles Next Articles
GUO Li-Ping, BAI Jie, LIANG Hai-Ou, LI Chun-Ping, SUN Wei-Yan, MENG Qing-Run
Received:2013-10-28
															
							
																	Revised:2013-12-17
															
							
															
							
																	Published:2014-08-20
															
							
																	Online:2014-07-15
															
						About author:GUO Li-Ping. E-mail: glpfy123@163.com				
													Supported by:CLC Number:
GUO Li-Ping, BAI Jie, LIANG Hai-Ou, LI Chun-Ping, SUN Wei-Yan, MENG Qing-Run. Preparation and Application of Carbon Nanofibers-supported Palladium Nanoparticles Catalysts Based on Electrospinning[J]. Journal of Inorganic Materials, 2014, 29(8): 814-820.
 
																													Fig.1 UV-vis diffuse reflection spectra of Pd NPs/PAN reduced by different reducing agents (A) Sodium borohydride; (B) Hydrazine hydrate; (C) Hydrogen gas
 
																													Fig.3 FTIR spectra of PdCl2/PAN nanofibers (A) and Pd NPs/CNFs catalysts (B, C, D) prepared with different reducing agents (B) Sodium borohydride; (C) Hydrazine hydrate; (D) Hydrogen gas
 
																													Fig. 4 SEM images of PdCl2/PAN nanofibers(a) and Pd NPs /PAN nanofibers (b, c, d) prepared with different reducing agents (b) Sodium borohydride; (c) Hydrazine hydrate; (d) Hydrogen gas
| Catalyst | Temperature /℃ | Reaction time /h | Catalyst /g | Conversion rate /% | Selectivity /% | 
|---|---|---|---|---|---|
| a | 150 | 10 | 0.0305 | 100 | 97.50 | 
| b | 150 | 10 | 0.0307 | 100 | 96.09 | 
| c | 150 | 10 | 0.0301 | 100 | 94.56 | 
Table 1 Comparative product yields for iodobenzene with methyl acrylate under series of catalysts
| Catalyst | Temperature /℃ | Reaction time /h | Catalyst /g | Conversion rate /% | Selectivity /% | 
|---|---|---|---|---|---|
| a | 150 | 10 | 0.0305 | 100 | 97.50 | 
| b | 150 | 10 | 0.0307 | 100 | 96.09 | 
| c | 150 | 10 | 0.0301 | 100 | 94.56 | 
| Run | Temperature /℃ | Reaction time /h | Catalyst /g | Conversion rate /% | Selectivity /% | 
|---|---|---|---|---|---|
| 1 | 150 | 10 | 0.0301 | 100 | 94.56 | 
| 2 | 150 | 10 | 0.0300 | 100 | 96.24 | 
| 3 | 150 | 10 | 0.0298 | 100 | 98.21 | 
| 4 | 150 | 10 | 0.0296 | 100 | 98.43 | 
| 5 | 150 | 10 | 0.0297 | 100 | 98.25 | 
Table 2 Recycling experiments using Pd NPs/CNFs catalyst in the Heck coupling reaction of iodobenzene and methyl acrylate
| Run | Temperature /℃ | Reaction time /h | Catalyst /g | Conversion rate /% | Selectivity /% | 
|---|---|---|---|---|---|
| 1 | 150 | 10 | 0.0301 | 100 | 94.56 | 
| 2 | 150 | 10 | 0.0300 | 100 | 96.24 | 
| 3 | 150 | 10 | 0.0298 | 100 | 98.21 | 
| 4 | 150 | 10 | 0.0296 | 100 | 98.43 | 
| 5 | 150 | 10 | 0.0297 | 100 | 98.25 | 
| [1] | SUH WON H, SUH YOO H, STUCKY, et al. Multifunctional nanosystems at the interface of physical and life sciences. Nano Today, 2009, 4(1): 27-36. | 
| [2] | SKHANNA A V, BAKSHI B R. Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ. Sci. Technol., 2009, 43(6): 2078-2084. | 
| [3] | MOSTOfiZADEH A, LI Y W, SONG B, et al. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater., 2011, 2011(2011): 1-21. | 
| [4] | QIN Y, XIA J H, STAEDLER T, et al. Effects of ion bombardment on the morphology and microstructure of carbon nanomaterials grown by microwave plasma chemical vapor deposition. Appl. Phys. Lett. , 2007, 90(24): 243109-1-3. | 
| [5] | NI Y H, GE X W, XU X L, et al. Developments in preparation of nano-scale materials. Journal of Inorganic Materials, 2000, 15(1): 9-15. | 
| [6] | WANG Y Z, YANG Q B, DU J S, et al. Electrospinning a high effect and low cost technique for nanofibers. New Chemical Materials, 2005, 33(6): 12-14. | 
| [7] | YANG Q B, LI D M, HONG Y L, et al. Preparation and Characterization of a PAN Nanofibre Containing Ag Nanoparticles via Electrospinning. Proceedings of the 2002 International Conference on Science and Technology of Synthetic Metals, 973-974. | 
| [8] | DEMIR M M, GULGUN M A, MENCELOGLU Y Z. Palladium nanoparticles by electrospinning from Poly (acrylonitrile-co- acrylic acid)-PdCl2 solutions. relations between preparation conditions, particle size, and catalytic activity. Macromolecules, 2004, 37(5): 1787-1792. | 
| [9] | BAI J, LI Y X, YANG S T, et al. Synthesis of AgCl/PAN composite nanofibres using an electrospinning method. Nanotechnology, 2007, 18(30): 305601-1-5. | 
| [10] | LI D, XIA Y N. Fabrication of titania nanofibers by electrospinning. Nano Lett., 2003, 3(4): 555-560. | 
| [11] | WU H, HU L B, ROWELL M W, et al. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. , 2010, 10(10): 4242-4248. | 
| [12] | ZHU J, ZHAO T J, KVASNDE I, et al. Carbon nanofiber-supp-orted palladium nanoparticles as potential recyclable catalysts for the Heck reaction. Chin. J. Catal., 2008, 29(11): 1145-1151. | 
| [13] | OKUMURA K, NOTA K, YOSHIDA K, et al. Catalytic performance and elution of Pd in the Heck reaction over zeolite-supported Pd cluster catalyst. J. Catal., 2005, 231(1): 245-253. | 
| [14] | HUAN C Y, MA L, LV D Y, et al. Preparation and formation mechanism of a new kind PdHx-Pd/C catalyst through hydrazine-reducing method under atmospheric pressure and H2-free conditions. Journal of Inorganic Materials, 2013, 28(10): 1072-1078. | 
| [15] | ZHAN K, YOU H H, LIU W Y, et al. Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Funct. Polym., 2011, 71(7): 756-765. | 
| [16] | TAKASAKI M, MOTOYAMA Y, HIGASHI K, et al. Chemoselective hydrogenation of nitroarenes with carbon nanofiber-suppo-rted platinum and palladium nanoparticles. Org. Lett., 2008, 10(8): 1601-1604. | 
| [17] | MOUSSA S, SIAMAKI A R, GUPTON B F, et al. Pd-partially reduced graphene oxide catalysts (Pd/PRGO): laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions. ACS Catal., 2012, 2(1): 145-154. | 
| [18] | ZHU J, ZHOU J H, ZHAO T J, et al. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction. Appl. Catal. A-Gen., 2009, 352(1): 243-250. | 
| [19] | MAIYALAGAN T, SCOTT K. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium.J. Power Sources, 2010, 195(16): 5246-5251. | 
| [20] | TSE K Y, ZHANG L Z, BAKER S E, et al. Vertically aligned carbon nanofibers coupled with organosilicon electrolytes: electrical properties of a high-stability nanostructured electrochemical interface. Chem. Mater., 2007, 19(23): 5734-5741. | 
| [21] | HU Y, GAO X H, YU L, et al. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem. Int. Ed., 2013, 52(21): 5636-5639. | 
| [22] | LÜ R J, SHI K Y, ZHOU W, et al. Highly dispersed Ni-decorated porous hollow carbon nanofibers: fabrication, characterization, and NOx gas sensors at room temperature. J. Mater. Chem., 2012, 22(47): 24814-24820. | 
| [23] | YANG Y, CENTRONE A, CHEN L, et al. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber .Carbon, 2011, 49(11): 3395-3403. | 
| [24] | AYKUT Y. Enhanced field electron emission from electrospun Co-loaded activated porous carbon nanofibers. ACS Appl. Mater. ,Interfaces, 2012, 4(7): 3405-3415. | 
| [25] | BAI J, YANG Q B, LI M Y, et al. Synthesis of poly (N-vinylp-yrrolidone)/β-cyclodextrin composite nanofibers using electrospinning techniques. J. Mater. Process Tech., 2008, 208(1): 251-254. | 
| [1] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. | 
| [2] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, LIU Haiyan, WANG Yingde. Infrared Radiation Shielded SiZrOC Nanofiber Membranes: Preparation and High-temperature Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2022, 37(1): 93-100. | 
| [3] | MA Lingling, CHANG Jiang. Nd-doped Calcium Silicate: Photothermal Effect, Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane [J]. Journal of Inorganic Materials, 2021, 36(9): 974-980. | 
| [4] | LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning [J]. Journal of Inorganic Materials, 2021, 36(6): 592-600. | 
| [5] | ZHU Zhengwang,FENG Rui,LIU Yang,ZHANG Yang,XIE Wenhan,DONG Lijie. Preparation and Property of CoFe2O4 Nanofibers with Fishbone-like Structure [J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016. | 
| [6] | SUN Xiao-Lu,SONG Xiao-Fei,LIU Yan-Hua,WU Yue,CAI Yi-Bing,ZHAO Hong-Mei. Electrospun FeMnO3 Nanofibrous Mats: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2019, 34(7): 709-714. | 
| [7] | ZHAO Hai-Lei, SUN Zhen-Chuan, CHEN Kui, WANG Hong-Zhi, YANG Yan-Dong, ZHOU Jian-Jun, LI Feng-Yuan, ZHANG Bing, SONG Fa-Liang. Synthesis, Property and Wear Detection of Disc Cutter for Shield Tunneling Machine of Nanobelt Ca0.68Si9Al3(ON)16 : Eu2+ Luminescence Fibers [J]. Journal of Inorganic Materials, 2018, 33(8): 866-872. | 
| [8] | CUI Bo, JIA Wei, CHEN Zheng-Hua, LI Yao-Gang, ZHANG Qing-Hong, WANG Hong-Zhi. Synthesis and Property of CaSi2O2N2:Ce/Tb, Eu Stacking Luminescence Fibers [J]. Journal of Inorganic Materials, 2018, 33(4): 403-408. | 
| [9] | DU Hai-Ying, YAO Peng-Jun, WANG Jing, SUN Yan-Hui, YU Nai-Sen, ZHANG Tao, DONG Liang. Preparation and Gas Sensing Property of SnO2/ZnO Composite Hetero-nanofibers Using Two-step Method [J]. Journal of Inorganic Materials, 2018, 33(4): 453-461. | 
| [10] | CAI Jian-Xin, LI Zhi-Peng, LI Wei, ZHAO Peng-Fei, YANG Zhen-Yu, YU Ji. Synthesis and Electrochemical Performance of Fe2O3 Nanofibers as Anode Materials for LIBs [J]. Journal of Inorganic Materials, 2018, 33(3): 301-306. | 
| [11] | WU Nan, WAN Lynn Yuqin, WANG Ying-De, FRANK KO. Electrospun Silicon Oxycarbide Ultrafine Fibers Derived from Polycarbosilane [J]. Journal of Inorganic Materials, 2018, 33(3): 357-362. | 
| [12] | ZHANG Xue-Ke, XIANG Jun, WU Zhi-Peng, LIU Min, SHEN Xiang-Qian. Co Content on Absorption Property of C/Co Nanofibers as a Lightweight Microwave Absorber [J]. Journal of Inorganic Materials, 2017, 32(12): 1299-1307. | 
| [13] | ZHAO Hai-Lei, CUI Bo, WANG Hong-Zhi, LI Yao-Gang, ZHANG Qing-Hong. Synthesis and Properties of Nanobelt CaSi2O2N2: Eu0.052+ Fluorescence Fibers [J]. Journal of Inorganic Materials, 2016, 31(1): 21-26. | 
| [14] | ZHANG SHU-XIAN, CUI BO, WANG HONG-ZHI, LI YAO-GANG, ZHANG QING-HONG. Preparation and Luminescence Properties of Flexible Eu3+ Doped SiO2 Fibrous Membranes [J]. Journal of Inorganic Materials, 2015, 30(7): 719-724. | 
| [15] | LI Jia-Le, XIANG Jun, YE Qin, LIU Min, SHEN Xiang-Qian. Microwave Absorption Properties of Double-layer Absorbing Coatings Based on Ni0.4Co0.2Zn0.4Fe2O4 and BaTiO3 Nanofibers [J]. Journal of Inorganic Materials, 2015, 30(5): 479-486. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||