Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (9): 974-980.DOI: 10.15541/jim2020721
• RESEARCH ARTICLE • Previous Articles Next Articles
MA Lingling1,2(), CHANG Jiang1,2(
)
Received:
2020-12-14
Revised:
2021-01-07
Published:
2021-09-20
Online:
2021-01-25
Contact:
CHANG Jiang, professor. E-mail: jchang@mail.sic.ac.cn
About author:
MA Lingling (1994-), female, PhD candidate. E-mail: malingling@mail.sic.ac.cn
Supported by:
CLC Number:
MA Lingling, CHANG Jiang. Nd-doped Calcium Silicate: Photothermal Effect, Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane[J]. Journal of Inorganic Materials, 2021, 36(9): 974-980.
Fig. 1 Phase composition and photothermal property of Nd/CS bioceramic powders after sintered at different temperatures (a) XRD patterns of the Nd/CS bioceramic powders after being sintered at different temperatures; (b) Photothermal performance (808 nm laser, 0.6 W/cm2) of Nd/CS bioceramic powders after being sintered at different temperatures
Fig. 2 Photothermal properties of Nd/CS bioceramic powder (a) Photothermal images of the powder at different moments under 0.5 W/cm2 power density; (b) Photothermal curves of powder under different laser power densities; (c) Powder stability under the photothermal conditions of 808 nm laser and 0.5 W/cm2
Fig. 3 Fluorescence properties of Nd/CS ceramic powder (a) Fluorescence emission spectrum of the powder at room temperature under 0.462 W/cm2 laser power density; (b) Fluorescence emission spectra under different laser power densities; (c) Linear fitting relationship between 1063 nm fluorescence intensity and temperature for Nd/CS powders
Fig. 4 Microscopic morphology, photothermal performance, fluorescence performance, and ion release property of composite electrospun membrane (a) SEM images of the composite electrospun membranes; (b) Photothermal curves of the electrospun membrane at a laser power density of 2 W/cm2; (c) Fluorescence intensity of the composite electrospun membrane under different laser power densities (1057 and 1063 nm); (d) Linear relationship between temperature and fluorescence intensity (1063 nm) for the composite electrospun membrane; (e, f) Amounts of Ca (e) and Si ions (f) released from the composite membrane after 1, 3, 5, and 7 d
Fig. 5 Biological properties of composite electrospun membrane (a) Photographs of HDF cell migration at 0 and 12 h after scratching; (b) Quantitative expression of cell migration at 12 h; (c) SEM images of cell adhesion and in-growth of HDF cells after 24 h of culture
[1] | ZU B B, ZHANG W, ZHANG Z J, et al. Photothermal enhanced photocatalytic properties of itanium dioxide (B)/glass fiber cloth. Journal of Inorganic Materials, 2019, 34(9):961-966. |
[2] |
XIE X, WU J R, CAI X J, et al. Photothermal/pH response B-CuS- DOX nanodrugs for chemo-photothermal synergistic therapy of tumor. Journal of Inorganic Materials, 2021, 36(1):81-87.
DOI URL |
[3] |
ZENG Y L, CHEN J J, TIAN Z F, et al. Preparation of mesoporous organosilica-based nanosystem for in vitro synergistic chemo-and photothermal therapy. Journal of Inorganic Materials, 2020, 35(12):1365-1372.
DOI URL |
[4] |
ZHAO L, LIU Y, XING R, et al. Supramolecular photothermal effects: a promising mechanism for efficient thermal conversion. Angew. Chem. Int. Ed., 2020, 59(10):3793-3801.
DOI URL |
[5] |
DEL R B, PÉREZ-DELGADO A, MISIAK M, et al. Neodymium- doped nanoparticles for infrared fluorescence bioimaging: the role of the host. Journal of Applied Physics, 2015, 118(14):143104.
DOI URL |
[6] |
CARRASCO E, DEL R B, SANZ-RODRíGUEZ F, et al. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Advanced Functional Materials, 2015, 25(4):615-626.
DOI URL |
[7] |
ZHONG J, CHEN D, PENG Y, et al. A review on nanostructured glass ceramics for promising application in optical thermometry. Journal of Alloys and Compounds, 2018, 763:34-48.
DOI URL |
[8] |
GNACH A, LIPINSKI T, BEDNARKIEWICZ A, et al. Upconverting nanoparticles: assessing the toxicity. Chemical Society Reviews, 2015, 44(6):1561-1584.
DOI URL |
[9] | MARGRIET V P, Danielle P L, HENK V L, et al. The status of in vitro toxicity studies in the risk asssessment of nanomaterials. Nanomedicine, 2009, 4(6):660-685. |
[10] |
LÜ R, YANG G, HE F, et al. LaF3:Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual- modal chemo-/photo-thermal therapy. Nanoscale, 2014, 6(24):14799-14809.
DOI URL |
[11] |
WU S, BUTT H J. Near-infrared-sensitive materials based on upconverting nanoparticles. Advanced Materials, 2016, 28(6):1208-1226.
DOI URL |
[12] |
HAASE M, SCHAEFER H. Upconverting nanoparticles. Angewandte Chemie-International Edition, 2011, 50(26):5808-5829.
DOI URL |
[13] |
WANG C, LIN K, CHANG J, et al. Osteogenesis and angiogenesis induced by porous beta-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials, 2013, 34(1):64-77.
DOI URL |
[14] |
LI H, CHANG J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater., 2013, 9(2):5379-5389.
DOI URL |
[15] |
ZHAI W, LU H, CHEN L, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater., 2012, 8(1):341-349.
DOI URL |
[16] |
WU C T, CHANG J. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 2013, 28(1):29-39.
DOI URL |
[17] |
YU Q, CHANG J, WU C. Silicate bioceramics: from soft tissue regeneration to tumor therapy. J. Mater. Chem. B, 2019, 7(36):5449-5460.
DOI URL |
[18] |
CRUM J V, CHONG S, PETERSON J A, et al. Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE=La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2. Acta Crystallogr E Crystallogr Commun, 2019, 75:1020-1025.
DOI URL |
[19] | PENG F, ZHANG Q L, WANG X F, et al. Synthesis, structure and spectroscopic properties of Nd3+:SrY2O4 phosphor. Journal of Physics, 2016, 65(1):1-6. |
[20] |
FIORENZO V, RAFIF N, ALICIA Z, et al. Temperature sensing using fluorescent nanothermometers. ACS Nano, 2010, 4(6):3254-3258.
DOI URL |
[21] |
JAQUE D, JACINTO C. Luminescent nanoprobes for thermal bio- sensing: towards controlled photo-thermal therapies. Journal of Luminescence, 2016, 169:394-399.
DOI URL |
[22] |
WU C T, FAN W, ZHOU Y H, et al. 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J. Mater. Chem., 2012, 22:12288-12295.
DOI URL |
[23] |
HOPPE A, GULDAL N S, BOCCACCINI A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011, 32(11):2757-2774.
DOI URL |
[24] |
LI H, CHANG J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater., 2013, 9(6):6981-6991.
DOI URL |
[1] | WANG Zhiqiang, WU Ji’an, CHEN Kunfeng, XUE Dongfeng. Large-size Er,Yb:YAG Single Crystal: Growth and Performance [J]. Journal of Inorganic Materials, 2023, 38(3): 329-334. |
[2] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
[3] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, LIU Haiyan, WANG Yingde. Infrared Radiation Shielded SiZrOC Nanofiber Membranes: Preparation and High-temperature Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2022, 37(1): 93-100. |
[4] | LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning [J]. Journal of Inorganic Materials, 2021, 36(6): 592-600. |
[5] | ZHU Zhengwang,FENG Rui,LIU Yang,ZHANG Yang,XIE Wenhan,DONG Lijie. Preparation and Property of CoFe2O4 Nanofibers with Fishbone-like Structure [J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016. |
[6] | SUN Xiao-Lu,SONG Xiao-Fei,LIU Yan-Hua,WU Yue,CAI Yi-Bing,ZHAO Hong-Mei. Electrospun FeMnO3 Nanofibrous Mats: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2019, 34(7): 709-714. |
[7] | ZHAO Hai-Lei, SUN Zhen-Chuan, CHEN Kui, WANG Hong-Zhi, YANG Yan-Dong, ZHOU Jian-Jun, LI Feng-Yuan, ZHANG Bing, SONG Fa-Liang. Synthesis, Property and Wear Detection of Disc Cutter for Shield Tunneling Machine of Nanobelt Ca0.68Si9Al3(ON)16 : Eu2+ Luminescence Fibers [J]. Journal of Inorganic Materials, 2018, 33(8): 866-872. |
[8] | CUI Bo, JIA Wei, CHEN Zheng-Hua, LI Yao-Gang, ZHANG Qing-Hong, WANG Hong-Zhi. Synthesis and Property of CaSi2O2N2:Ce/Tb, Eu Stacking Luminescence Fibers [J]. Journal of Inorganic Materials, 2018, 33(4): 403-408. |
[9] | DU Hai-Ying, YAO Peng-Jun, WANG Jing, SUN Yan-Hui, YU Nai-Sen, ZHANG Tao, DONG Liang. Preparation and Gas Sensing Property of SnO2/ZnO Composite Hetero-nanofibers Using Two-step Method [J]. Journal of Inorganic Materials, 2018, 33(4): 453-461. |
[10] | CAI Jian-Xin, LI Zhi-Peng, LI Wei, ZHAO Peng-Fei, YANG Zhen-Yu, YU Ji. Synthesis and Electrochemical Performance of Fe2O3 Nanofibers as Anode Materials for LIBs [J]. Journal of Inorganic Materials, 2018, 33(3): 301-306. |
[11] | WU Nan, WAN Lynn Yuqin, WANG Ying-De, FRANK KO. Electrospun Silicon Oxycarbide Ultrafine Fibers Derived from Polycarbosilane [J]. Journal of Inorganic Materials, 2018, 33(3): 357-362. |
[12] | ZHANG Xue-Ke, XIANG Jun, WU Zhi-Peng, LIU Min, SHEN Xiang-Qian. Co Content on Absorption Property of C/Co Nanofibers as a Lightweight Microwave Absorber [J]. Journal of Inorganic Materials, 2017, 32(12): 1299-1307. |
[13] | WANG Yun-Feng, SONG Jin-Fan, TANG Xiao-Yan, HU Dong-Mei. Preparation and Modified Upconversion Luminescence In NaGd(WO4)2:Yb3+/Tm3+ Inverse Opal Photonic Crystals [J]. Journal of Inorganic Materials, 2016, 31(10): 1058-1062. |
[14] | ZHAO Hai-Lei, CUI Bo, WANG Hong-Zhi, LI Yao-Gang, ZHANG Qing-Hong. Synthesis and Properties of Nanobelt CaSi2O2N2: Eu0.052+ Fluorescence Fibers [J]. Journal of Inorganic Materials, 2016, 31(1): 21-26. |
[15] | ZHANG SHU-XIAN, CUI BO, WANG HONG-ZHI, LI YAO-GANG, ZHANG QING-HONG. Preparation and Luminescence Properties of Flexible Eu3+ Doped SiO2 Fibrous Membranes [J]. Journal of Inorganic Materials, 2015, 30(7): 719-724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||