无机材料学报 ›› 2025, Vol. 40 ›› Issue (5): 529-535.DOI: 10.15541/jim20240456

• 研究论文 • 上一篇    下一篇

熔融法制备Nd:YLF原料及其晶体生长和性能研究

赵凯旋1,2(), 刘文鹏2(), 丁守军3, 窦仁勤2, 罗建乔2, 高进云2, 孙贵花2, 任浩4, 张庆礼2   

  1. 1.安徽大学 物质科学与信息技术研究院, 合肥 230601
    2.中国科学院 合肥物质科学研究院, 安徽光学精密机械研究所, 安徽省光子器件与材料省级实验室, 合肥 230031
    3.安徽工业大学 微电子与数据科学学院, 马鞍山 243032
    4.南京大学 材料科学与工程系, 固体微结构国家实验室, 南京 210093
  • 收稿日期:2024-11-01 修回日期:2024-12-24 出版日期:2025-05-20 网络出版日期:2025-01-24
  • 通讯作者: 刘文鹏, 副研究员. E-mail: wpliu@aiofm.ac.cn
  • 作者简介:赵凯旋(1999-), 男, 硕士研究生. E-mail: 1953805838@qq.com
  • 基金资助:
    安徽省科技重大专项(202203a05020002);国家自然科学基金(52272011);国家重点研究发展计划(2022YFB3605703);国家重点研究发展计划(2023YFB3507403);中国科学院青年创新促进会(2023463)

Nd:YLF Crystal Growth: Raw Materials Preparation by Melting Method and Property

ZHAO Kaixuan1,2(), LIU Wenpeng2(), DING Shoujun3, DOU Renqin2, LUO Jianqiao2, GAO Jinyun2, SUN Guihua2, REN Hao4, ZHANG Qingli2   

  1. 1. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
    2. Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
    3. School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243032, China
    4. National Laboratory of Solid State Microstructure, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
  • Received:2024-11-01 Revised:2024-12-24 Published:2025-05-20 Online:2025-01-24
  • Contact: LIU Wenpeng, associate professor. E-mail: wpliu@aiofm.ac.cn
  • About author:ZHAO Kaixuan (1999-), male, Master candidate. E-mail: 1953805838@qq.com
  • Supported by:
    Anhui Province Science and Technology Major Project(202203a05020002);National Natural Science Foundation of China(52272011);National Key R&D Program of China(2022YFB3605703);National Key R&D Program of China(2023YFB3507403);Youth Innovation Promotion Association(2023463)

摘要:

Nd3+离子掺杂LiYF4(Nd:YLF)晶体是一种性能优异的激光晶体, 在科研、工业、医疗领域具有广泛应用。目前, 采用二元氟化物混合作为晶体生长原料存在形成氟氧化物的问题, 利用HF气体氟化制备原料又相对复杂, 因此制备高纯度氟化物原料是实现高质量氟化物晶体生长的重要因素之一。另外, 晶体生长气氛中通常含有CF4或HF, 其对生长系统有较强腐蚀性, 提高了晶体生长成本。本研究设计了一种近密闭式熔料装置, 并结合在高于晶体熔点温度下的熔料工艺和漂浮物打捞工艺, 以获得高纯度YLF晶相多晶生长原料。在高纯Ar气氛中进行Nd:YLF晶体生长, 获得了完整晶体。测试了多晶原料、制得晶体的X射线衍射(XRD)谱图, 并采用Rietveld方法进行精修, 获得了晶体的晶格参数、原子坐标、原子占有率和温度因子等参数。晶体的(100)晶面的X射线摇摆曲线(XRC)半高宽(FWHM)为0.007°。通过测量晶体中的各元素含量, 得到Nd3+在YLF中的分凝系数为0.3。晶体ac晶向的最强吸收峰在797.4和792.3 nm, 吸收截面分别为3.37×10-20和5.49×10-20 cm2。最强发射峰位于1047 nm, 发射截面为1.598×10-19 cm2, 荧光寿命为483 μs。本研究采用熔融法制备的Nd:YLF多晶生长原料相纯度高, 结合提拉法晶体生长过程中抽真空和升温工艺, 能够大幅减少晶体生长过程中氟氧化物的形成, 实现在Ar气氛下生长晶体。

关键词: Nd:YLF, 激光晶体, 晶体结构, 光谱分析

Abstract:

Nd3+-doped LiYF4 (Nd:YLF) crystal is a laser crystal with excellent performance, which is widely used in scientific research, industrial and medical fields. But its existing crystal growth method using binary fluoride mixtures is problematic due to fluoride oxides being formed in fluoride raw materials, and process of preparing raw materials by using HF gas fluorination is relatively complicated. Therefore, preparation of high-purity fluoride raw materials is one of the important factors to realize the growth of high-quality fluoride crystals. Meanwhile, crystal growth atmosphere usually contains CF4 or HF, which is highly corrosive to growth system and increases cost of crystal growth. In this work, to obtain high-quality Nd:YLF crystal, the polycrystalline growth raw material with high-purity YLF crystalline phase was first prepared using a nearly closed melting material device, which was a novel design facilitating the melting process and floating salvage process at the temperature above the crystal melting point. Intact Nd:YLF crystal was obtained after growth under a high-purity Ar atmosphere. X-ray diffraction (XRD) patterns of polycrystalline raw materials and growing crystals were tested, while lattice parameters, atomic coordinates, atomic occupancy and temperature factor were obtained by Rietveld refinement. By measuring X-ray rocking curve (XRC) of (100) crystallographic plane of the as-obtained Nd:YLF crystal, the full width at half maximum (FWHM) of diffraction peak is 0.007°. The segregation coefficient of Nd3+ in YLF calculated by measuring the content of each element is 0.3. The strongest absorption peaks of Nd:YLF crystal locate at 797.4 nm (a direction) and 792.3 nm (c direction) with absorption cross sections of 3.37×10-20 and 5.49×10-20 cm2, respectively. The strongest emission peak of Nd:YLF crystal locates at 1047 nm with stimulated emission cross section of 1.598×10-19 cm2 and fluorescence lifetime of 483 μs. Based on above data, Nd:YLF polycrystalline raw materials prepared by melting method achieve high phase purity. Combined with Czochralski method of crystal growth with vacuum extraction and heating process, the present growth method can greatly reduce the formation of fluoride oxide during the growth process, which proves a successful growth under Ar atmosphere.

Key words: Nd:YLF, laser crystal, crystal structure, spectral analysis

中图分类号: