无机材料学报 ›› 2022, Vol. 37 ›› Issue (9): 1001-1008.DOI: 10.15541/jim20210806
陈瀚翔1(), 周敏1, 莫曌2, 宜坚坚3, 李华明2, 许晖2()
收稿日期:
2021-12-30
修回日期:
2022-04-27
出版日期:
2022-09-20
网络出版日期:
2022-05-09
通讯作者:
许 晖, 教授. E-mail: xh@ujs.edu.cn作者简介:
陈瀚翔(1993-), 男, 博士研究生. E-mail: 2350505633@qq.com
基金资助:
CHEN Hanxiang1(), ZHOU Min1, MO Zhao2, YI Jianjian3, LI Huaming2, XU Hui2()
Received:
2021-12-30
Revised:
2022-04-27
Published:
2022-09-20
Online:
2022-05-09
Contact:
XU Hui, professor. E-mail: xh@ujs.edu.cnAbout author:
CHEN Hanxiang (1993-), male, PhD candidate. E-mail: 2350505633@qq.com
Supported by:
摘要:
在光催化产氢反应中引入助催化剂可促进光生电子快速转移, 是提高光催化活性的有效方法。而目前, 高效助催化剂主要仍然是贵金属, 其高昂的价格极大限制了实际应用。本研究探讨了构筑非贵金属助催化剂CoN与g-C3N4 0D/2D紧密界面对光催化制氢性能的影响。负载非贵金属助催化剂CoN可以有效提高2D g-C3N4的光催化制氢活性, 负载量对其活性也有影响。构筑的0D/2D紧密界面有利于光生电子快速传输。两者的共同作用使得10% CoN/2D g-C3N4复合物光催化制氢效率达到403.6 μmol·g-1·h-1, 是2D g-C3N4单体的20倍。在CoN/2D g-C3N4复合材料中, 负载CoN作为析氢助催化剂可以显著促进电荷转移过程, 从而大幅提高光催化析氢活性。
中图分类号:
陈瀚翔, 周敏, 莫曌, 宜坚坚, 李华明, 许晖. CoN/g-C3N4 0D/2D复合结构及其光催化制氢性能研究[J]. 无机材料学报, 2022, 37(9): 1001-1008.
CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production[J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008.
图1 (a)2D g-C3N4, CoN/2D g-C3N4复合催化剂和CoN的XRD图谱, (b)2D g-C3N4和CoN/2D g-C3N4复合催化剂的FT-IR谱图, (c)2D g-C3N4, CoN/2D g-C3N4复合催化剂和CoN的紫外-可见光漫反射吸收光谱图, (d)2D g-C3N4和10% CoN/2D g-C3N4的氮气吸附-脱附等温线
Fig. 1 (a) XRD patterns of 2D g-C3N4, and 10% CoN/2D g-C3N4 samples, and CoN, (b) FT-IR spectra of 2D g-C3N4, and CoN/2D g-C3N4 samples, (c) UV-Vis diffuse reflectance spectra of 2D g-C3N4, and CoN/2D g-C3N4 samples, and CoN, (d) N2 adsorption-desorption isomers of 2D g-C3N4 and 10% CoN/2D g-C3N4 Colorful figures are available on website
图2 (a)2D g-C3N4, (b)CoN和(c)10% CoN/2D g-C3N4的SEM照片, 10% CoN/2D g-C3N4的(d, e)TEM照片和(f)高倍TEM照片
Fig. 2 SEM images of (a) 2D g-C3N4, (b) CoN and (c) 10% CoN/2D g-C3N4, and (d, e) TEM images and (f) HR-TEM image of 10% CoN/2D g-C3N4
图3 (a)2D g-C3N4和CoN/2D g-C3N4复合催化剂的光催化制氢速率测试, (b)10% CoN/2D g-C3N4复合催化剂的制氢稳定性测试(10% TEOA作为牺牲剂, 10 mg催化剂, 氙灯作为光源, λ>400 nm)
Fig. 3 (a) Photocatalytic hydrogen evolution with photocatalysts under visible light irradiation, and (b) hydrogen evolution stability test of 10% CoN/2D g-C3N4 under visible light irradiation (10% TEOA as sacrificial agent, 10 mg catalyst usage, xenon lamp as light source, λ>400 nm) Colorful figures are available on website
图4 2D g-C3N4和10% CoN/2D g-C3N4的(a)稳态荧光光谱图(激发波长为384 nm), (b)光电流响应图, (c)电化学阻抗谱图和(d)2D g-C3N4和10% CoN/2D g-C3N4的莫特肖特基曲线
Fig. 4 (a) Steady-state PL spectra excited at 384 nm, (b) photocurrent-time dependence, (c) electrochemical impedance spectra (EIS) of 2D g-C3N4 and 10% CoN/2D g-C3N4, and (d) Motschottky (MS) curves of 2D g-C3N4 and 10% CoN/2D g-C3N4 Colorful figures are available on website
图5 2D g-C3N4和10% CoN/2D g-C3N4在(a, b)可见光照射和(c, d)暗处的(a, c)超氧自由基和(b, d)羟基自由基ESR谱图
Fig. 5 ESR spectra of (a, c) DMPO-·O2- and (b, d) ·OH O2- and (b, d) ·OH (a, b) under visible-light irradiation and (c, d) without light irradiation of the 2D g-C3N4 and 10% CoN/2D g-C3N4 Colorful figures are available on website
Photocatalyst | Type of strategy | HER performance /(μmol·g-1·h-1) | Ref. |
---|---|---|---|
CoN/2D g-C3N4 | Nanosheets Nanostructure | 403.6 | This work |
Melem Oligomer | Functional group | 90 | [6] |
MoS2/g-C3N4 | Cocatalyst | 7.5 | [7] |
BP/g-C3N4 | Cocatalyst | 43 | [8] |
MoSe2/g-C3N4 | Cocatalyst | 7.5 | [9] |
p-n junction of g-C3N4 | Type II | 140 | [10] |
g-C3N4-NaI-WO3 | Z-scheme | 36 | [11] |
W18O49/g-C3N4 | Plasmonic effect | 4.8 | [12] |
表S1 不同类型g-C3N4的策略及其析氢性能
Table S1 Different types of strategies for g-C3N4 and their hydrogen evolution performance
Photocatalyst | Type of strategy | HER performance /(μmol·g-1·h-1) | Ref. |
---|---|---|---|
CoN/2D g-C3N4 | Nanosheets Nanostructure | 403.6 | This work |
Melem Oligomer | Functional group | 90 | [6] |
MoS2/g-C3N4 | Cocatalyst | 7.5 | [7] |
BP/g-C3N4 | Cocatalyst | 43 | [8] |
MoSe2/g-C3N4 | Cocatalyst | 7.5 | [9] |
p-n junction of g-C3N4 | Type II | 140 | [10] |
g-C3N4-NaI-WO3 | Z-scheme | 36 | [11] |
W18O49/g-C3N4 | Plasmonic effect | 4.8 | [12] |
图S1 (a)10% CoN/2D g-C3N4的SEM照片, (b~d)C、N、Co的EDS元素分布图
Fig. S1 (a) SEM image of 10% CoN/2D g-C3N4, (b-d) EDS elemental mappings from C, N and Co corresponding to 10% CoN/2D g-C3N4
图S2 (a)10% CoN/2D g-C3N4和2D g-C3N4的XPS全谱图, (b)CoN和10% CoN/2D g-C3N4的Co2p高分辨XPS图谱, 2D g-C3N4和10% CoN/2D g-C3N4的(c)C1s和(d)N1s高分辨XPS图谱
Fig. S2 (a) XPS survey spectra of 10% CoN/2D g-C3N4 and 2D g-C3N4, (b) Co2p XPS spectra of CoN and 10% CoN/2D g-C3N4, (c) C1s and (d) N1s XPS spectra of 2D g-C3N4 and 10% CoN/2D g-C3N4
[1] |
YAN Z, JI M, XIA J, et al. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2019, 10(11): 1902020.
DOI URL |
[2] | CHISALITA D A, PETRESCU L, CORMOS C C. Environmental evaluation of european ammonia production considering various hydrogen supply chains. Renewable & Sustainable Energy Reviews, 2020, 130: 109964. |
[3] | APOSTOLOU D, XYDIS G. A literature review on hydrogen refuelling stations and infrastructure. current status and future prospects. Renewable & Sustainable Energy Reviews, 2019, 113: 109292. |
[4] | STAFFELL I, SCAMMAN D, ABAD A V, et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 2019, 12(2): 463-491. |
[5] | WANG Y C, LIU X Y, WANG X X, et al. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion. Chemical Engineering Journal, 2021, 419: 129459. |
[6] | CHEN Y W, LI L L, XU Q L, et al. Controllable synthesis of g-C3N4 inverse opal photocatalysts for superior hydrogen evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2009080. |
[7] |
NIU P, LI L. Overall photocatalytic water splitting of crystalline carbon nitride with facet engineering. Chem, 2020, 6(10): 2439-2441.
DOI URL |
[8] |
VOROBYEVA E, GERKEN V C, MITCHELL S, et al. Activation of copper species on carbon nitride for enhanced activity in the arylation of amines. ACS Catalysis, 2020, 10(19): 11069-11080.
DOI URL |
[9] | GUO H, NIU C G, LIANG C, et al. Highly crystalline porous carbon nitride with electron accumulation capacity: promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation. Chemical Engineering Journal, 2021, 409: 128030. |
[10] |
MO Z, DI J, YAN P, et al. An all-organic D-A system for visible- light-driven overall water splitting. Small, 2020, 16(48): 2003914.
DOI URL |
[11] | FU J J, MO Z, CHENG M, et al. An all-organic TPA-3CN/ 2D-C3N4 heterostructure for high efficiency photocatalytic hydrogen evolution. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020, 589: 124397. |
[12] | YI J J, EL-ALAMI W, SONG Y H, et al. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal, 2020, 382: 122812. |
[13] | YANG W, WANG Y. Enhanced electron and mass transfer flow- through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in ampicillin wastewater. Applied Catalysis B-Environmental, 2021, 282: 119574. |
[14] | GAO J F, ZHANG F D, XUE H Q, et al. In-situ synthesis of novel ternary CdS/PdAg/g-C3N4 hybrid photocatalyst with significantly enhanced hydrogen production activity and catalytic mechanism exploration. Applied Catalysis B-Environmental, 2021, 281: 12. |
[15] | LI Y, ZHANG M, ZHOU L, et al. Recent advances in surface- modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Physico-Chimica Sinica, 2020, 37(6): 2009030. |
[16] |
LIAO Y W, YANG J, WANG G H, et al. Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4. Rare Metals, 2021, 41(2): 396-405.
DOI URL |
[17] | KIM D, YONG K. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Applied Catalysis B-Environmental, 2021, 282: 119538. |
[18] |
LIU C, FENG Y, HAN Z T, et al. Z-scheme N-doped K4Nb6O17/ g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production. Chinese Journal of Catalysis, 2021, 42(1): 164-174.
DOI URL |
[19] | XUE Z L, KANG J Y, GUO D, et al. Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2018, 273: 229-238. |
[20] | ZHU D D, ZHOU Q X. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Applied Catalysis B-Environmental, 2021, 281: 119474. |
[21] |
LIU W W, PAN J, PENG R F. Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C3N4 photocatalyst. Rare Metals, 2021, 40(12): 3554-3560.
DOI URL |
[22] | SHEN R C, HE K L, ZHANG A P, et al. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B-Environmental, 2021, 291: 120104. |
[23] | MIAO H, ZHANG G W, HU X Y, et al. A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties. Journal of Alloys and Compounds, 2017, 690: 669-676. |
[24] |
XU H T, XIAO R, HUANG J R, et al. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2021, 42(1): 107-114.
DOI URL |
[25] |
KUMAR S, GAWANDE M B, KOPP J, et al. P- and F-co-doped carbon nitride nanocatalysts for photocatalytic CO2 reduction and thermocatalytic furanics synthesis from sugars. ChemSusChem, 2020, 13(19): 5231-5238.
DOI URL |
[26] | LAN H C, LI L L, AN X Q, et al. Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects. Applied Catalysis B-Environmental, 2017, 204: 49-57. |
[27] |
ZHAO C X, TANG H, LIU W, et al. Constructing 0D FeP nanodots/2D g-C3N4 nanosheets heterojunction for highly improved photocatalytic hydrogen evolution. ChemCatChem, 2019, 11(24): 6310-6315.
DOI URL |
[28] | QIU P, XU C, CHEN H, et al. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity. Applied Catalysis B-Environmental, 2017, 206: 319-327. |
[29] | ZHAO W, LI Y, ZHAO P, et al. Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances. Journal of Hazardous Materials, 2021, 402: 123711. |
[30] | YI J J, SHE X J, SONG Y H, et al. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chemical Engineering Journal, 2018, 335: 282-289. |
[31] | YANG Q, CHEN C C, ZHANG Q Y, et al. Molecular engineering of supramolecular precursor to modulate g-C3N4 for boosting photocatalytic hydrogen evolution. Carbon, 2020, 164: 337-348. |
[32] |
HOU T T, XIAO Y, CUI P X, et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Advanced Energy Materials, 2019, 9(43): 1902319.
DOI URL |
[33] |
SUN Z J, CHEN H L, ZHANG L, et al. Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. Journal of Materials Chemistry A, 2016, 4(34): 13289-13295.
DOI URL |
[34] | QI W L, LIU S Q, LI F, et al. Prussian blue derived Fe2N for efficiently improving the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets. Catalysis Science & Technology, 2019, 9(10): 2571-2577. |
[35] | TIAN N, ZHANG Y H, LI X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy, 2017, 38: 72-81. |
[36] | LI Y H, GU M L, ZHANG X M, et al. 2D g-C3N4 for advancement of photo-generated carrier dynamics: status and challenges. Materials Today, 2020, 41: 270-303. |
[37] | XIA P, CHENG B, JIANG J, et al. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Applied Surface Science, 2019, 487: 335-342. |
[38] | WANG Y, CHEN L, CHEN C, et al. Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. Applied Catalysis B-Environmental, 2019, 254: 283-291. |
[39] |
LI K, WANG L, CHEN Z, et al. Photocatalytic hydrogen evolution under ambient conditions on polymeric carbon nitride/ donor-π-acceptor organic molecule heterostructures. Advanced Functional Materials, 2020, 30(43): 2005106.
DOI URL |
[1] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[2] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[3] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
[4] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[5] | 胡越, 安琳, 韩鑫, 侯成义, 王宏志, 李耀刚, 张青红. RhO2修饰BiVO4薄膜光阳极的制备及其光电催化分解水性能[J]. 无机材料学报, 2022, 37(8): 873-882. |
[6] | 薛虹云, 王聪宇, MAHMOOD Asad, 于佳君, 王焱, 谢晓峰, 孙静. 二维g-C3N4与Ag-TiO2复合光催化剂降解气态乙醛抗失活研究[J]. 无机材料学报, 2022, 37(8): 865-872. |
[7] | 洪佳辉, 马冉, 仵云超, 文涛, 艾玥洁. MOFs自牺牲模板法制备CoNx/g-C3N4纳米材料用作高效光催化还原U(VI)[J]. 无机材料学报, 2022, 37(7): 741-749. |
[8] | 迟聪聪, 屈盼盼, 任超男, 许馨, 白飞飞, 张丹洁. SiO2@Ag@SiO2@TiO2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7): 750-756. |
[9] | 王晓俊, 许文, 刘润路, 潘辉, 朱申敏. 水凝胶负载的纳米银/氮化碳光催化剂的制备及性能研究[J]. 无机材料学报, 2022, 37(7): 731-740. |
[10] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[11] | 付永胜, 毕敏, 李春, 孙敬文, 汪信, 朱俊武. 非贵金属/碳氮复合材料电催化析氧反应的研究进展[J]. 无机材料学报, 2022, 37(2): 163-172. |
[12] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[13] | 张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64. |
[14] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[15] | 王潇, 朱智杰, 吴之怡, 张城城, 陈志杰, 肖梦琦, 李超然, 何乐. 钴等离激元超结构粉体催化剂的制备及其光热催化应用[J]. 无机材料学报, 2022, 37(1): 22-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||