无机材料学报 ›› 2022, Vol. 37 ›› Issue (10): 1051-1057.DOI: 10.15541/jim20220185 CSTR: 32189.14.10.15541/jim20220185
收稿日期:
2022-04-03
修回日期:
2022-05-15
出版日期:
2022-10-20
网络出版日期:
2022-05-27
通讯作者:
顾学红, 教授. E-mail: xhgu@njtech.edu.cn作者简介:
吕庆洋(1997-), 男, 硕士研究生. E-mail: 201961204185@njtech.edu.cn
基金资助:
LÜ Qingyang(), ZHANG Yuting, GU Xuehong(
)
Received:
2022-04-03
Revised:
2022-05-15
Published:
2022-10-20
Online:
2022-05-27
Contact:
GU Xuehong, professor. E-mail: xhgu@njtech.edu.cnAbout author:
LÜ Qingyang (1997-), male, Master candidate. E-mail: 201961204185@njtech.edu.cn
Supported by:
摘要:
TiO2膜具有亲水性强和热化学稳定性好等优点而用于超滤分离, 但是TiO2膜以管式膜为主, 渗透通量低且制备周期长。为了提高TiO2膜的渗透通量, 并缩短膜的制备周期, 本工作以钛酸四丁酯为前驱体, 采用超声辅助溶胶-凝胶法制备高通量的中空纤维负载型TiO2超滤膜。系统考察了硝酸与钛酸四丁酯的摩尔比(酸钛比)、超声时间和煅烧温度对TiO2溶胶粒径及膜截留性能的影响。结果表明:当酸钛比为0.25时, 溶胶的平均粒径为3252 nm, 采用超声处理30 s后, 平均粒径减小至1817 nm。采用超声后的溶胶循环涂膜并在350 ℃煅烧两次后可得到完整无缺陷的中空纤维TiO2超滤膜, 膜层平均厚度为1 μm, 膜的纯水渗透通量为145 L·m-2·h-1·bar-1(1 bar=0.1 MPa), 葡聚糖截留分子量为2586 Da, 对应的平均孔径为2.5 nm。
中图分类号:
吕庆洋, 张玉亭, 顾学红. 超声辅助溶胶-凝胶法制备中空纤维TiO2超滤膜[J]. 无机材料学报, 2022, 37(10): 1051-1057.
LÜ Qingyang, ZHANG Yuting, GU Xuehong. Fabrication of Hollow Fiber Supported TiO2 Ultrafiltration Membranes via Ultrasound-assisted Sol-Gel Method[J]. Journal of Inorganic Materials, 2022, 37(10): 1051-1057.
图2 不同酸钛比制备的TiO2膜表面和断面SEM照片
Fig. 2 Surface and cross-section SEM images of TiO2 membranes prepared with different acid/titanium ratios (a1, a2) CM0.25-0-350; (b1, b2) CM0.5-0-350; (c1, c2) CM0.75-0-350
图4 不同超声时间制备的TiO2膜表面及断面SEM照片
Fig. 4 Surface and cross-section SEM images of TiO2 membranes prepared by sonication for different periods (a1, a2) UM0.25-15-350; (b1, b2) UM0.25-30-350; (c1, c2) UM0.25-45-350
图5 采用常规和超声辅助溶胶-凝胶法制备的TiO2膜成膜机理图
Fig. 5 Schematic diagram of proposed formation mechanism of TiO2 membranes prepared by conventional and ultrasound-assisted Sol-Gel methods
图7 不同温度煅烧得到的TiO2膜表面SEM照片及其3D形貌
Fig. 7 Surface SEM and 3D morphologies of TiO2 membranes calcined at different temperatures (a) UM0.25-30-350; (b) UM0.25-30-400; (c) UM0.25-30-450; (d) UM0.25-30-500
Membrane | Membrane configuration | Calcination temperature/℃ | Pore size / nm | Thickness/ μm | Coating number | Water flux/ (L·m-2·h-1·bar-1) | MWCO/ Da | Ref. |
---|---|---|---|---|---|---|---|---|
P25-TiO2 | Tube | 400 | 3.6 | 2 | 4 | 128 | 5600 | [ |
MXene-TiO2 | Tube | 400 | 6.5 | 5 | 1 | 90 | 22000 | [ |
P123-TiO2 | Tube | 400 | 6.1 | 2 | 3 | 7.16 | 19000 | [ |
CM0.5-0-350 | Hollow fiber | 350 | 4.4 | 5 | 3 | 142 | 9078 | This work |
UM0.25-30-350 | Hollow fiber | 350 | 2.5 | 1 | 2 | 145 | 2586 | This work |
表1 常规及超声辅助的溶胶-凝胶法与文献中制备的TiO2膜的性能比较
Table 1 Comparison between TiO2 membranes prepared by conventional and ultrasound-assisted sol-gel method
Membrane | Membrane configuration | Calcination temperature/℃ | Pore size / nm | Thickness/ μm | Coating number | Water flux/ (L·m-2·h-1·bar-1) | MWCO/ Da | Ref. |
---|---|---|---|---|---|---|---|---|
P25-TiO2 | Tube | 400 | 3.6 | 2 | 4 | 128 | 5600 | [ |
MXene-TiO2 | Tube | 400 | 6.5 | 5 | 1 | 90 | 22000 | [ |
P123-TiO2 | Tube | 400 | 6.1 | 2 | 3 | 7.16 | 19000 | [ |
CM0.5-0-350 | Hollow fiber | 350 | 4.4 | 5 | 3 | 142 | 9078 | This work |
UM0.25-30-350 | Hollow fiber | 350 | 2.5 | 1 | 2 | 145 | 2586 | This work |
[1] |
ZHU B, HU Y X, KENNEDY S, et al. Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes. Journal of Membrane Science, 2011, 378(1/2): 61-72.
DOI URL |
[2] | ALVENTOSA E, BARREDO S, ALCAINA M L, et al. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. Journal of Hazard Mater., 2012(209/210): 492-500. |
[3] |
KOVACS I, VEREB G, KERTESZ S, et al. Fouling mitigation and cleanability of TiO2 photocatalyst-modified PVDF membranes during ultrafiltration of model oily wastewater with different salt contents. Environmental Science and Pollution Research, 2018, 25(35): 34912-34921.
DOI URL |
[4] |
GASCHI P S, GASCHI P S, BARROS S T, et al. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration. Acta Scientiarum Technology, 2014, 36(2): 303-306.
DOI URL |
[5] | LEHMAN S G, LIU L. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent. Water Reseach, 2009, 43(7): 2020-2028. |
[6] |
KUZNIATSOVA T, MOTTERN M L, SHQAU K, et al. Micro-structural optimization of supported γ-alumina membranes. Journal of Membrane Science, 2008, 316(1/2): 80-88.
DOI URL |
[7] |
GESTEL T V, KRUIDHOF H, BLANK D H A, et al. ZrO2 and TiO2 membranes for nanofiltration and pervaporation Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO<300. Journal of Membrane Science, 2006, 284(1/2): 128-136.
DOI URL |
[8] |
YACOU C, SMART S, COSTA J C D D. Mesoporous TiO2 based membranes for water desalination and brine processing. Separation and Purification Technology, 2015, 147: 166-171.
DOI URL |
[9] |
CHOI H, STATHATOS E, DIONYSIOU D D. Sol-Gel preparation of mesoporous photocatalytic TiO2 films and TiO2-Al2O3 composite membranes for environmental applications. Applied Catalysis B: Environmental, 2006, 63: 60-67.
DOI URL |
[10] |
DOBRAK A, VERRECHT B, DUNGEN H V D, et al. Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes. Journal of Membrane Science, 2010, 346(2): 344-352.
DOI URL |
[11] |
GESTEL T V, SEBOLD D, HAULER F, et al. Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: evaluation of SiO2, ZrO2, Y2O3-ZrO2and TiO2-ZrO2Sol-Gel membranes. Journal of Membrane Science, 2010, 359(1/2): 64-79.
DOI URL |
[12] |
LI D, WANG H, JING W H, et al. Fabrication of mesoporous TiO2 membranes by a nanoparticle-modified polymeric sol process. Journal of Colloid and Interface Science, 2014, 433: 43-48.
DOI URL |
[13] | KIM Y S, YANG S M. Preparation of continuous mesoporous silica thin film on a porous tube. Advanced Materials, 2002, 14(15): 1079-1081. |
[14] |
TSURU T, NARITA M, SHINAGAWA R, et al. Nanoporous titania membranes for permeation and filtration of organic solutions. Desalination, 2008, 233(1/2/3): 1-9.
DOI URL |
[15] |
XU Z, SUN Y Q, ZHUANG Y X, et al. Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. Journal of Membrane Science, 2018, 564: 35-43.
DOI URL |
[16] |
CABRERA M C C, WALKER G S, GRANT D M. Effect of processing parameters on the particle size and stabilisation of titania sols. Journal of Materials Science, 2005, 40: 3709-3714.
DOI URL |
[17] |
CAI Y Y, WANG Y, CHEN X F, et al. Modified colloidal Sol-Gel process for fabrication of titania nanofiltration membranes with organic additives. Journal of Membrane Science, 2015, 476: 432-441.
DOI URL |
[18] |
GESTEL T V, VANDECASTEELE C, BUEKENHOUDT A, et al. Corrosion properties of alumina and titania NF membranes. Journal of Membrane Science, 2003, 214(1): 21-29.
DOI URL |
[19] |
JING W H, HUANG W, XING W H, et al. Fabrication of supported mesoporous TiO2 membranes:matching the assembled and interparticle pores for an improved ultrafiltration performance. Applied Materials and Interfaces, 2009, 1(7): 1607-1612.
DOI URL |
[20] |
QIU M H, FAN S, CAI Y Y, et al. Co-sintering synthesis of bi-layer titania ultrafiltration membranes with intermediate layer of sol-coated nanofibers. Journal of Membrane Science, 2010, 365(1/2): 225-231.
DOI URL |
[21] |
WU L Q, HUANG P, XU N P, et al. Effects of sol properties and calcination on the performance of titania tubular membranes. Journal of Membrane Science, 2000, 173: 263-273.
DOI URL |
[22] |
WANG P, CHUNG T S. A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation. Environmental Science and Technology, 2013, 47(12): 6272-6278.
DOI URL |
[23] |
SHI Z Z, ZHANG Y T, CAI C, et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four- channel configuration. Ceramics International, 2015, 41(1): 1333-1339.
DOI URL |
[24] |
CAI C, ZHANG Y T, ZHANG C, et al. Microstructure modulation of α-Al2O3hollow fiber membranes with four-channel geometric configuration. Asia-Pacific Journal of Chemical Engineering, 2016, 11(6): 949-957.
DOI URL |
[25] |
DING X B, FAN Y Q, XU N P. A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis. Journal of Membrane Science, 2006, 270(1/2): 179-186.
DOI URL |
[26] |
WHU J A, BALTZIS B C, SIRKAR K K. Nanofiltration studies of larger organic microsolutes in methanol solutions. Journal of Membrane Science, 2000, 170: 159-172.
DOI URL |
[27] |
ALVES A K, BERUTTI F A, BERGMANN C P. The effects of pH on the preparation of alumina by Sol-Gel process. Particulate Science and Technology, 2005, 23(4): 351-360.
DOI URL |
[28] |
TSURU T, OGAWA K, KANEZASHI M, et al. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures. Langmuir, 2010, 26(13): 10897-10905.
DOI PMID |
[29] |
SKLUZACEK J M, ISABEL T M, MARC A A. Influence of membrane support structure on the efficiency of an iron-modified silica nanofiltration membrane. Journal of Porous Materials, 2007, 15(3): 303-309.
DOI URL |
[30] |
ZASPALIS V T, PRAAG W V, KEIZER K, et al. Synthesis and characterization of primary alumina, titania and binary membranes. Journal of Materials Science, 1992, 27: 1023-1035.
DOI URL |
[1] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[2] | 叶梓滨, 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江. 阳极支撑型锥管串接式直接碳固体氧化物燃料电池组的制备及性能[J]. 无机材料学报, 2024, 39(7): 819-827. |
[3] | 沈斌, 张旭, 熊怀, 李海元, 谢兴龙. 溶胶-凝胶SiO2减反膜的制备与光学性能研究[J]. 无机材料学报, 2024, 39(5): 525-530. |
[4] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
[5] | 郭宇翔, 黄立强, 王刚, 王宏志. 双锂盐凝胶复合电解质的制备及其在锂金属电池中的应用[J]. 无机材料学报, 2023, 38(7): 785-792. |
[6] | 张祥松, 刘业通, 王永瑛, 武子瑞, 刘振中, 李毅, 杨娟. 自组装制备PtIr合金气凝胶及其高效电催化氨氧化性能[J]. 无机材料学报, 2023, 38(5): 511-520. |
[7] | 刘文龙, 赵瑾, 刘娟, 毛小建, 章健, 王士维. 微波干燥自发凝固成型氧化铝湿坯[J]. 无机材料学报, 2023, 38(4): 461-468. |
[8] | 靳喜海, 董满江, 阚艳梅, 梁波, 董绍明. 透明AlON陶瓷凝胶浇注成型及其无压烧结制备[J]. 无机材料学报, 2023, 38(2): 193-198. |
[9] | 贾玉娜, 曹旭, 焦秀玲, 陈代荣. 无机酸铝体系氧化铝连续纤维的制备技术研究[J]. 无机材料学报, 2023, 38(11): 1257-1264. |
[10] | 贾鑫, 李晋宇, 丁世豪, 申倩倩, 贾虎生, 薛晋波. Pd纳米颗粒协同氧空位增强TiO2光催化CO2还原性能[J]. 无机材料学报, 2023, 38(11): 1301-1308. |
[11] | 李文俊, 王皓, 涂兵田, 谌强国, 郑凯平, 王为民, 傅正义. 宽光谱透过Mg0.9Al2.08O3.97N0.03透明陶瓷的制备与性能研究[J]. 无机材料学报, 2022, 37(9): 969-975. |
[12] | 王晓俊, 许文, 刘润路, 潘辉, 朱申敏. 水凝胶负载的纳米银/氮化碳光催化剂的制备及性能研究[J]. 无机材料学报, 2022, 37(7): 731-740. |
[13] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[14] | 罗艺, 夏书海, 牛波, 张亚运, 龙东辉. 柔性有机硅气凝胶的制备及其高温无机化转变研究[J]. 无机材料学报, 2022, 37(12): 1281-1288. |
[15] | 吴爱军, 朱敏, 朱钰方. 含铜硅酸钙纳米棒复合水凝胶用于肿瘤治疗和皮肤伤口愈合性能研究[J]. 无机材料学报, 2022, 37(11): 1203-1216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||