无机材料学报 ›› 2021, Vol. 36 ›› Issue (9): 936-942.DOI: 10.15541/jim20200635 CSTR: 32189.14.10.15541/jim20200635
所属专题: 【虚拟专辑】热电材料(2020~2021)
收稿日期:
2020-11-08
修回日期:
2021-01-12
出版日期:
2021-09-20
网络出版日期:
2021-01-25
通讯作者:
彭良明, 教授. E-mail: penglm@ustc.edu.cn
作者简介:
张岑岑(1995-), 女, 博士研究生. E-mail: zcccate@mail.ustc.edu.cn
ZHANG Cencen(), WANG Xue, PENG Liangming(
)
Received:
2020-11-08
Revised:
2021-01-12
Published:
2021-09-20
Online:
2021-01-25
Contact:
PENG Liangming, professor. E-mail: penglm@ustc.edu.cn
About author:
ZHANG Cencen(1995-), female, PhD candidate. E-mail: zcccate@mail.ustc.edu.cn
摘要:
PbTe在中温区热电材料中广受关注, 然而, n型PbTe因其较低的载流子浓度和复杂的能带结构, 其热电性能难以大幅提升。本研究通过分步式添加PbS、Sb2Se3组元以调控n型PbTe基体的热、电传输性能。研究发现, PbS与Sb2Se3组元可分别提升功率因子和降低热导率。通过扩大带隙、增加点缺陷、第二相弥散等途径可改善能带, 加剧散射, 从而有效提升热电优值ZT。其中(PbTe)0.94(PbS)0.05(Sb2Se3)0.01表现出最佳的热电性能, 700 K时ZT最大值为1.7, 且ZT平均值较PbTe基体显著提高, 这表明分步式双组元调控可为改善其它材料体系的热电性能提供技术途径。
中图分类号:
张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942.
ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components[J]. Journal of Inorganic Materials, 2021, 36(9): 936-942.
Nominal composition | Sample ID | RH/(cm3∙C-1) | nH/(´1019, cm-3) | μH/(cm2∙V-1∙s-1) | |
---|---|---|---|---|---|
Matrix | PbTe | A | -0.203 | 3.075 | 82.691 |
Dual component | (PbTe)0.97(PbS)0.03 | AB3 | -0.099 | 6.319 | 104.962 |
(PbTe)0.95(PbS)0.05 | AB5 | -0.115 | 5.918 | 98.805 | |
(PbTe)0.93(PbS)0.07 | AB7 | -0.087 | 7.223 | 40.345 | |
Triple component | (PbTe)0.945(PbS)0.05(Sb2Se3)0.005 | AB5C0.5 | -0.071 | 8.752 | 89.784 |
(PbTe)0.94(PbS)0.05(Sb2Se3)0.01 | AB5C1 | -0.116 | 5.406 | 51.586 | |
(PbTe)0.935(PbS)0.05(Sb2Se3)0.015 | AB5C1.5 | -0.106 | 5.924 | 30.806 |
表1 (PbTe)1-x-y(PbS)x(Sb2Se3)y的编号、室温下的霍尔系数、载流子浓度与迁移率
Table 1 Sample ID, Hall coefficients, carrier concentrations and mobilities at room temperature for (PbTe)1-x-y(PbS)x(Sb2Se3)y
Nominal composition | Sample ID | RH/(cm3∙C-1) | nH/(´1019, cm-3) | μH/(cm2∙V-1∙s-1) | |
---|---|---|---|---|---|
Matrix | PbTe | A | -0.203 | 3.075 | 82.691 |
Dual component | (PbTe)0.97(PbS)0.03 | AB3 | -0.099 | 6.319 | 104.962 |
(PbTe)0.95(PbS)0.05 | AB5 | -0.115 | 5.918 | 98.805 | |
(PbTe)0.93(PbS)0.07 | AB7 | -0.087 | 7.223 | 40.345 | |
Triple component | (PbTe)0.945(PbS)0.05(Sb2Se3)0.005 | AB5C0.5 | -0.071 | 8.752 | 89.784 |
(PbTe)0.94(PbS)0.05(Sb2Se3)0.01 | AB5C1 | -0.116 | 5.406 | 51.586 | |
(PbTe)0.935(PbS)0.05(Sb2Se3)0.015 | AB5C1.5 | -0.106 | 5.924 | 30.806 |
图2 多组元体系中PbTe晶格常数a和峰偏移角度Δ2θ随组元含量的变化关系
Fig. 2 Lattice parameters a and migration angle Δ2θ of PbTe varied as functions of contents of different components (a) Matrix, dual-component; (b) Triple-component systems
图4 双组元样品ABm的热电性能曲线
Fig. 4 Temperature dependences of thermoelectric properties for dual-component samples ABm (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) ZT
图5 三组元样品AB5Cn的热电性能曲线
Fig. 5 Temperature dependences of thermoelectric properties for triple-component samples AB5Cn (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) ZT
图6 样品AB5的(a)断面形貌(SEM)、(b)背散射(BSE)图像, 样品AB5C1的(c)断面形貌(SEM)、(d)背散射(BSE)图像以及(e)EDS面扫结果
Fig. 6 (a) Fractured surfure SEM and (b) back-scattered electron (BSE) images for sample AB5, (c) fractured surfure SEM image, (d) back-scattered electron (BSE) image and (e) EDS mappings for sample AB5C1
[1] |
YUAN G C, HAN S B, LEI X B, et al. The enhancement of thermoelectric performance of p-type Li doped Mg2Ge0.4Sn0.6 by Si addition. Scripta Materialia, 2019, 166:122-127.
DOI URL |
[2] |
YU G T, XIN J Z, ZHAO T J, et al. Thermoelectric property of Zn-Sb doped Mg2(Si,Sn) alloys. Journal of Inorganic Materials, 2019, 34(3):310-314.
DOI URL |
[3] |
XIAO Y, WU H J, WANG D Y, et al. Amphoteric indium enables carrier engineering to enhance the power factor and thermoelectric performance in n-type AgnPb100InnTe100+2n (LIST). Advanced Energy Materials, 2019, 9(17):1900414.
DOI URL |
[4] |
ZHOU Y M, ZHOU Y L, PANG Q T, et al. Different doping sites of Ag on Cu2SnSe3 and their thermoelectric property. Journal of Inorganic Materials, 2019, 34(3):301-309.
DOI URL |
[5] |
SONG J M, RAHMAN J U, CHO J Y, et al. Chemically synthesized Cu2Te incorporated Bi-Sb-Te p-type thermoelectric materials for low temperature energy harvesting. Scripta Materialia, 2019, 165:78-83.
DOI URL |
[6] |
ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14):1605884.
DOI URL |
[7] |
ZHOU Z X, LI J L, FAN Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scripta Materialia, 2019, 162:166-171.
DOI URL |
[8] |
XIAO Y, ZHAO L D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Materials, 2018, 3(1):55.
DOI URL |
[9] |
ZHAI J Z, WANG T, WANG H C, et al. Strategies for optimizing the thermoelectricity of PbTe alloys. Chinese Physics B, 2018, 27(4):047306.
DOI URL |
[10] |
CHERE E K, ZHANG Q, MCENANEY K, et al. Enhancement of thermoelectric performance in n-type PbTe1-ySey by doping Cr and tuning Te:Se ratio. Nano Energy, 2015, 13:355-367.
DOI URL |
[11] |
ZHANG C C, ZHAO Y, GU P, et al. Thermoelectric performance in pseudo-ternary (PbTe)0.95-x(Sb2Se3)x(PbS)0.05 system with ultra-low thermal conductivity via multi-scale phonon scattering. Current Applied Physics, 2020, 20(9):1008-1012.
DOI URL |
[12] |
XIAO Y, WANG D Y, QIN B C, et al. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe. Journal of the American Chemical Society, 2018, 140:13097-13102.
DOI URL |
[13] |
JAVIER F T, PABLO A P, JORGE K. Effect of intrinsic defects on the thermal conductivity of PbTe from classical molecular dynamics simulations. Journal of Physics: Condensed Matter, 2020, 32(4):045701.
DOI URL |
[14] |
PEI Y L, TAN G J, DAN F, et al. Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system. Advanced Energy Materials, 2017, 7(3):1601450.
DOI URL |
[15] | PEI Y Z, LALONDE A, LWANAGE S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011, 4(6):2085-2089. |
[16] | XIAO Y, WU H J, CUI J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy & Environmental Science, 2018, 11(9):2486-2495. |
[17] |
WU Y X, NAN P F, CHEN Z W, et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands. Advanced Science, 2020, 7(12):1902628.
DOI URL |
[18] |
LI J Q, LU Z W, LI S M, et al. High thermoelectric properties of PbTe-Sm2Se3 composites. Scripta Materialia, 2016, 112:144-147.
DOI URL |
[19] | KIM Y J, ZHAO L D, KANATZIDIS M G, et al. Analysis of nanoprecipitates in a Na-doped PbTe-SrTe thermoelectric material with a high figure of merit. ACS Applied Materials & Interfaces, 2017, 9(26):21791-21797. |
[20] |
GINTING D, LIN C C, RHYEE J S. Synergetic approach for superior thermoelectric performance in PbTe-PbSe-PbS quaternary alloys and composites. Energies, 2019, 13(1):72.
DOI URL |
[21] |
GINTING D, LIN C C, LYDIA R, et al. High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95-x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Materialia, 2017, 131:98-109.
DOI URL |
[22] |
SUN H, YU F R, ZHAO P, et al. Thermoelectric performance of single elemental doped n-type PbTe regulated by carrier concentration. Journal of Alloys and Compounds, 2019, 787:180-185.
DOI URL |
[23] |
JOOD P, MALE J P, ANAND S, et al. Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties. Journal of the American Chemical Society, 2020, 142(36):15464-15475.
DOI URL |
[24] | YAMINI S A, WANG H, GINTING D, et al. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6:11476-11483. |
[25] |
QIN B C, HU X G, ZHANG Y, et al. Comprehensive investigation on the thermoelectric properties of p-type PbTe-PbSe-PbS alloys. Advanced Electronic Materials, 2019, 5(12):1900609.
DOI URL |
[26] | QIAN X, WU H J, ZHANG D Y, et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy & Environmental Science, 2019, 12(6):1969-1978. |
[27] |
ALIABAD H R, RAD F A. Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches. Physica B: Condensed Matter, 2018, 545:275-284
DOI URL |
[28] | FU L W, YIN M J, WU D, et al. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy & Environmental Science, 2017, 10(9):2030-2040. |
[29] |
GIRARD S N, HE J Q, LI C P, et al. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Letters, 2010, 10:2825-2831.
DOI URL |
[30] |
TAN G J, STOUMPOS C C, WANG S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance. Advanced Energy Materials, 2017, 7(18):1700099.
DOI URL |
[31] |
LU Y, LI K Y, ZHANG X L, et al. Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution. Chinese Physics B, 2018, 27(2):026103.
DOI URL |
[32] |
YANG Z, WANG S Q, SUN Y J, et al. Enhancing thermoelectric performance of n-type PbTe through separately optimizing phonon and charge transport properties. Journal of Alloys and Compounds, 2020, 828:154377.
DOI URL |
[33] |
SHAABANI L, BLAKE G R, MANETTAS A, et al. Thermoelectric performance of single-phase tellurium-reduced quaternary (PbTe)0.55(PbS)0.1(PbSe)0.35. ACS Omega, 2019, 4(5):9235-9240.
DOI URL |
[34] |
SU X L, HAO S Q, BAILEY T P, et al. Weak electron phonon coupling and deep level impurity for high thermoelectric performance Pb1-xGaxTe. Advanced Energy Materials, 2018, 8:1800659.
DOI URL |
[35] |
ZHANG Q, CHERE E K, WANG Y M, et al. High thermoelectric performance of n-type PbTe1-ySy due to deep lying states induced by indium doping and spinodal decomposition. Nano Energy, 2016, 22:572-582.
DOI URL |
[36] |
BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416):414-418.
DOI URL |
[37] |
ZHAO M H, CHANG C, XIAO Y, et al. High performance of n-type (PbS)1-x-y(PbSe)x(PbTe)y thermoelectric materials. Journal of Alloys and Compounds, 2018, 744:769-777.
DOI URL |
[38] |
WANG S Q, YANG Z, SUN Y J, et al. Synergistically optimizing charge and phonon transport properties in n-type PbTe via introducing ternary compound AgSb(Se, Te)2. Journal of Alloys and Compounds, 2020, 815:152463.
DOI URL |
[1] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[2] | 陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 孟雨婷, 王雪梅, 章淑娴, 陈志炜, 裴艳中. Bi2Te3基热电材料的单带和双带传输特性转变[J]. 无机材料学报, 2024, 39(11): 1283-1291. |
[5] | 苏浩健, 周敏, 李来风. 多元素掺杂优化SnTe的热电性能[J]. 无机材料学报, 2024, 39(10): 1159-1166. |
[6] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[7] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[8] | 李建波, 田震, 蒋全伟, 于砺锋, 康慧君, 曹志强, 王同敏. 不同元素掺杂对CaTiO3微观结构及热电性能的影响[J]. 无机材料学报, 2023, 38(12): 1396-1404. |
[9] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[10] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[11] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[12] | 金敏, 白旭东, 张如林, 周丽娜, 李荣斌. 区熔法制备金属硫化物Ag2S及其热电性能研究[J]. 无机材料学报, 2022, 37(1): 101-106. |
[13] | 杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354. |
[14] | 蔡剑锋, 王泓翔, 刘国强, 蒋俊. 热电材料中的高熵结构设计[J]. 无机材料学报, 2021, 36(4): 399-404. |
[15] | 康慧君,张校影,王燕遐,李建波,杨雄,刘达权,杨泽荣,王同敏. 变价稀土元素Eu掺杂BiCuSeO热电性能的研究[J]. 无机材料学报, 2020, 35(9): 1041-1046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||