无机材料学报 ›› 2021, Vol. 36 ›› Issue (7): 695-710.DOI: 10.15541/jim20200443 CSTR: 32189.14.10.15541/jim20200443
李华鑫(), 陈俊勇, 肖洲, 乐弦, 余显波, 向军辉(
)
收稿日期:
2020-08-10
修回日期:
2020-10-27
出版日期:
2021-07-20
网络出版日期:
2020-12-01
通讯作者:
向军辉, 教授. E-mail: xiangjh@ucas.edu.cn
作者简介:
李华鑫(1994-), 女, 博士研究生. E-mail:lihuaxin17@mails.ucas.ac.cn
基金资助:
LI Huaxin(), CHEN Junyong, XIAO Zhou, YUE Xian, YU Xianbo, XIANG Junhui(
)
Received:
2020-08-10
Revised:
2020-10-27
Published:
2021-07-20
Online:
2020-12-01
Contact:
XIANG Junhui, professor. E-mail:xiangjh@ucas.edu.cn
About author:
LI Huaxin(1994-), female, PhD candidate. E-mail:lihuaxin17@mails.ucas.ac.cn
Supported by:
摘要:
纳米材料在纳米尺度展现出的特殊性质, 相较于宏观尺度材料表现出众多优异特性, 在力学、声学、光学、磁学、电学、热学等各种领域具有良好的应用前景。纳米材料的仿生自组装技术模拟活体生命活动, 使纳米材料基于非共价键的相互作用, 自发形成稳定结构, 现已成为制备纳米材料的主要方法之一。仿生自组装技术是“自上而下”方法中的重要技术手段, 这种合成方式有望代替传统的“自上而下”加工技术, 实现单个原子或分子在纳米尺度上构造特定结构和功能的器件。另外, 仿生自组装技术虽然以化学过程为主, 但又有物理过程, 并且结合了“仿生学”的优点, 具有定向构造纳米材料的特点, 是众多交叉学科的热门研究手段。本文重点介绍了纳米材料在形貌和性能调控中不同的仿生自组装合成策略, 包括屏蔽效应的位相选择自组装、双相界面协同效应的仿生自组装、场诱导定位效应的功能器件一体化制备、光诱导自组装以及羟基氢键驱动的分相自组装, 总结了仿生自组装纳米材料的特性, 归纳了自组装技术在传感器、表面拉曼散射、生物医疗等领域的应用, 并对纳米材料仿生自组装技术的发展前景进行了展望。
中图分类号:
李华鑫, 陈俊勇, 肖洲, 乐弦, 余显波, 向军辉. 纳米材料形貌和性能调控的仿生自组装研究进展[J]. 无机材料学报, 2021, 36(7): 695-710.
LI Huaxin, CHEN Junyong, XIAO Zhou, YUE Xian, YU Xianbo, XIANG Junhui. Research Progress of Biomimetic Self-assembly of Nanomaterials in Morphology and Performance Control[J]. Journal of Inorganic Materials, 2021, 36(7): 695-710.
图1 (a)使用屏蔽试剂制作微图形的示意图[32], (b)基于屏蔽效应自组装表面纳米图案的路线图[37]
Fig. 1 (a) Schematic procedure of micropattern fabrication employing a shielding reagent[32] and (b) route of self-assembled surface nanopatterns based on shielding effect[37]
图2 Pickering乳液稳定机理示意图[40]
Fig. 2 Schematic diagram of Pickering emulsion stability mechanism[40] (a) O/W emulsion; (b) W/O emulsion; (c) Changes of surface tension when particles with radius rare adsorbed on the oil-water interface
图3 超薄聚亚胺膜制备过程及膜性能表征[41]
Fig. 3 Preparation process and characterization of ultra-thin polyimide nanofilms[41] (BBR: Brilliant Blue R; AB: Aniline Blue; AF: Acid Fuchsin; RB: Rose Bengal; MO: Methyl Orange)
图4 (a)界面自组装MLFs的形成和转移示意图[42], (b)各向异性的X形针铁矿晶体在油/水界面处自组装形成微米级空心球示意图[44], (c)可结晶二嵌段共聚物在油/水双相界面自组装示意图[45]
Fig. 4 (a) Schematic diagram of formation and transfer of interfacial self-assembly mlfs[42]; (b) Schematic diagram of anisotropic X-shaped goethite crystal self-assembly at oil/water interface to form micron scale hollow spheres[44]; (c) Schematic diagram of self-assembly of crystalline diblock copolymer at oil/water interface[45] (BCP: Block Copolymer)
图6 (a,b)自发自组装和电场诱导自组装过程和不同形貌组装过程示意图[52], (c)磁场诱导一维纳米立方体带自组装示意图[56]; (d)磁性纳米柱阵列(FFPDMS柱阵列)诱导氧化铁纳米颗粒自组装示意图[57]
Fig. 6 (a,b) Schematic diagram of self-assembly and electric field induced self-assembly and assembly process with different morphologies[52]; (c) Schematic diagram of magnetic field-induced self-assembly of one-dimensional nanocube belts[56]; (d) Schematic diagram of magnetic nanopillar array (FFPDMS column array) inducing self-assembly of iron oxide nanoparticles[57]
图7 (a)光和金属离子诱导自组装和重组装示意图[58], (b)通过种子Photo-PISA制备负载HRP的温敏聚合物囊泡[59], (c)光诱导原位自组装合成聚合物纳米结构[60]
Fig. 7 (a) Schematic diagram of self-assembly and reassembly induced by light and metal ions[58]; (b) Preparation of HRP-loaded temperature-sensitive polymer vesicles by seed Photo-PISA[59]; (c) Light-induced in-situ self-assembly synthesis of polymer nanostructures[60]
图8 (a)采用溶胶-凝胶法水相制备疏水聚硅氧烷过程示意图[61], (b)羟基氢键诱导自组装制备三元复合物疏水聚氨酯绵PU/HEC/SiO2过程示意图[61], (c)羟基氢键诱导自组装疏水聚乙烯醇绵PVA/SiO2过程示意图[62]
Fig. 8 (a) Preparation of hydrophobic polysiloxane in aqueous phase by Sol-Gel method[61]; (b) Schematic diagram of preparation of ternary composite hydrophobic polyurethane sponge PU/HEC/SiO2 by hydroxyl hydrogen bond induction self-assembly[61]; (c) Schematic diagram of PVA/SiO2 with hydrophobicity induced by hydroxyl hydrogen bond[62]
图9 (a)SnS2/Zn2SnO4混合膜传感器的传感性能: 人呼气、手掌出汗和婴儿尿布上的尿液及水滴计数[74], (b)基于GOx装载的H/G4-PANI水凝胶的葡萄糖传感器检测葡萄糖[85], (c)人体皮肤上的应变传感器阵列的实时响应[83]
Fig. 9 (a) SnS2/Zn2SnO4 hybrid membrane sensor performance under different applications: human exhalation, palm sweating, urine and water droplets on baby diapers[74]; (b) Glucose sensor based on GOx loaded H/G4-PANI hydrogel for detecting glucose[85]; (c) Real-time response of strain sensor arrays on human skin[83]
图10 (a)大鼠肝止血: 左为肝脏在左叶矢状切开后未进行任何处理而产生大量出血(对照组); 右为使用约1%(w/v) (16 mmol/L)的I3QGK水溶液治疗导致快速止血(I3QGK组)[120], (b)用单光子激光扫描共聚焦显微镜观察PC-3细胞中的自组装肽[122]
Fig. 10 (a) Rat liver hemostasis. Left: Liver produced massive bleeding after sagittal incision in the left lobe (Con. group). Right: Treatment with approximately 1%(w/v) (16 mmol/L) I3QGK aqueous solution leads to rapid hemostasis (I3QGK group)[120]; (b) Single-photon laser scanning confocal microscope for self-assembling peptides in PC-3 cells[122]
[1] |
VALIEV R. Materials science-nanomaterial advantage. Nature, 2002, 419(6910):887-889.
DOI URL |
[2] |
SEKER U O S, CHEN A Y, CITORIK R J, et al. Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity. ACS Synthetic Biology, 2016,6(2):266-275.
DOI URL |
[3] |
KOVALCHUK A A, TOUR J M. Tuning electrical conductivity of inorganic minerals with carbon nanomaterials. ACS Appl. Mater. Interfaces, 2015,7(47):26079-26084.
DOI URL |
[4] |
FAN J A, WU C, BAO K, et al. Self-Assembled plasmonic nanoparticle clusters. Science, 2010,328(5982):1135-1138.
DOI URL |
[5] |
NA, ZHANG S, WANG S, et al. A catalytic nanomaterial-based optical chemo-sensor array. J. Am. Chem. Soc., 2006,128(45):14420-14421.
DOI URL |
[6] |
DE OLIVEIRA R E P, SJDIN N, FOKINE M, et al Fabrication and optical characterization of silica optical fibers containing gold nanoparticles. ACS Appl. Mater. Interfaces, 2015,7(1):370-375.
DOI URL |
[7] |
KWON O S, SONG H S, PARK T H, et al. Conducting nanomaterial sensor using natural receptors. Chem. Rev., 2019,119(1):36-93.
DOI URL |
[8] |
KULKARNI G S, REDDY K, ZHONG Z, et al. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun., 2014,5(1):4376-4382.
DOI URL |
[9] |
BOUBENIA S, DAHIYA A S, POULIN-VITTRANT G, et al. A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci. Rep., 2017,7(1):15187.
DOI URL |
[10] | NING L, LI Y, LI W, et al. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property. Journal of Physical Chemistry C, 2016,120(6). |
[11] | POMERANTSEVA E, BONACCORSO F, FENG X, et al. Energy storage: the future enabled by nanomaterials. Science, 2019,366(6468). |
[12] |
ZHOU Y, NASH P, LIU T, et al. the large scale synthesis of aligned plate nanostructures. Sci. Rep., 2016,6(1):29972.
DOI URL |
[13] |
SAI H, XING L, XIANG J, et al. Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J. Mater. Chem. A, 2013,1(27):7963-7970.
DOI URL |
[14] |
JOHN D, MACKENZIE ERIC, BESCHER P, et al. Chemical routes in the synthesis of nanomaterials using the Sol-Gel process. Acc. Chem. Res., 2007, 40(9):810-818.
DOI URL |
[15] | HAN C, ANDERSEN J, PILLAI S C, et al., Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. In sustainable nanotechnology and the environment: advances and achievements. J. Am. Chem. Soc., 2013,1124:201-229. |
[16] |
ZARUR A J, YING J Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature, 2000,403(6765):65-67.
DOI URL |
[17] |
GRESCHNER A A, BUJOLD K E, SLEIMAN H F. Intercalators as molecular chaperones in DNA self-assembly. J. Am. Chem. Soc., 2013,135(30):11283-11288.
DOI URL |
[18] |
SHAO Y, JIA H, CAO T, et al. Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res., 50(4):659-668.
DOI URL |
[19] |
SUN H, LUO Q, HOU C, et al. Nanostructures based on protein self-assembly: from hierarchical construction to bioinspired materials. Nano Today, 2017,14:16-41.
DOI URL |
[20] |
AKASOV R, GILEVA A, ZAYTSEVA-ZOTOVA, et al. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly. Biotechnology Letters, 2016,39(1):45-53.
DOI URL |
[21] |
WAQAS M, JEONG W J, LEE Y J, et al., PH-dependent in-cell self-assembly of peptide inhibitors increases the anti-prion activity while decreasing the cytotoxicity. Biomacromolecules, 2017,18:943-950.
DOI URL |
[22] |
TRIFONOV A, STEMMER A, TEL-VERED R. Power generation by selective self-assembly of biocatalysts. ACS Nano, 2019,13(8):8630-8638.
DOI URL |
[23] |
DONG B, ZHOU T, ZHANG H, et al. Directed self-assembly of nanoparticles for nanomotors. ACS Nano, 2013,7(6):5192-5198.
DOI URL |
[24] |
CHENG J Y, SANDERS D P, TRUONG H D, et al. Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist. ACS Nano, 2010,4(8):4815-4823.
DOI URL |
[25] |
ZHANG S G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 2003,21(10):1171-1178.
DOI URL |
[26] |
CHEN X, QIAN W, JIN P, et al. Self-Assembly of large DNA origami with custom-designed scaffolds. ACS Appl. Mater. Interfaces, 2018,10(29):24344-24348.
DOI URL |
[27] |
YANG W, LI B. Facile fabrication of hollow silica nanospheres and their hierarchical self-assemblies as drug delivery carriers through a new single-micelle-template approach. J. Mater. Chem. B, 2013,1(19):2525-2532.
DOI URL |
[28] |
GRÖSCHEL H A, MÜLLER A H E. Self-Assembly concepts for multicompartment nanostructures. Nanoscale, 2015,7(28):11841-11876.
DOI URL |
[29] |
WALT D R. Top-to-bottom functional design. Nat. Mater., 2002. 1(1):17-18.
DOI URL |
[30] |
MAI W, ZUO Y, ZHANG X, et al. A versatile bottom-up interface self-assembly strategy to hairy nanoparticle-based 2D monolayered composite and functional nanosheets. Chem. Comm., 2019,55:10241-10244.
DOI URL |
[31] |
MAJETICH S A, WEN T, BOOTH R A. Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano, 2011,5(8):6081-6084.
DOI URL |
[32] |
XIANG J, MASUDA Y, KOUMOTO K. Fabrication of super-site-selective TiO2 micropattern on a flexible polymer substrate using a barrier-effect self-assembly process. Adv. Mater., 2004,16(16):1461-1464.
DOI URL |
[33] |
HUANG Z, WANG P C, MACDIARMID A G, et al. Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates. Langmuir, 2005,13:6480-6484.
DOI URL |
[34] |
KOBAKU S P R, KWON G, KOTA A K, et al. Wettability engendered templated self-assembly (wets) for fabricating multiphasic particles. ACS Appl. Mater. Interfaces, 2015,7(7):4075-4080.
DOI URL |
[35] |
ZHAO B. Surface-directed liquid flow inside microchannels. Science, 2001,291(5506):1023-1026.
DOI URL |
[36] |
XIANG J, ZHU P, MASUDA Y, et al. Fabrication of self- assembled monolayers (sams) and inorganic micropattern on flexible polymer substrate. Langmuir, 2004,20(8):3278-3283.
DOI URL |
[37] |
ZEIRA A, CHOWDHURY D, HOEPPENER S, et al. Patterned organosilane monolayers as lyophobic lyophilic guiding templates in surface self-assembly: monolayer self-assembly versus wetting- driven self-assembly. Langmuir, 2009,25(24):13984-14001.
DOI URL |
[38] |
BROCHARD F, PIERANSKI P, GUYON E. Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field. Physical Review Letters, 1972,28(26):1681-1683.
DOI URL |
[39] |
BINKS B P. Particles as surfactants—Similarities and differences. Current Opinion in Colloid & Interface Science, 2002,7(1/2):21-41.
DOI URL |
[40] | YANG PING-HUI, SUN WEI, HU SI, et al. Self-assembly of nanoparticles at interfaces. Progress in Chemistry, 2014,26(7):1107-1119. |
[41] |
TIWARI K, SARKAR P, MODAK S, et al. Large area self- assembled ultrathin polyimine nanofilms formed at the liquid- liquid interface used for molecular separation. Adv. Mater., 2020,32(8):1905621.
DOI URL |
[42] | LI Y J, HUANG W J, SUN S G. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew.Chem. Int. Ed., 2006, 118(16):2599-2601. |
[43] |
LIANG X, XIANG J, ZHANG F, et al. Fabrication of hierarchical CaCO3 mesoporous spheres: particle-mediated self-organization induced by biphase interfaces and sams. Langmuir, 2010,26(8):5882-5888.
DOI URL |
[44] |
DOU Z, CAO C, WANG Q, et al. Synthesis, self-assembly, and high performance in gas sensing of X-Shaped iron oxide crystals. ACS Appl. Mater. Interfaces, 2012,4(10):5698-5703.
DOI URL |
[45] |
DOU H, LI M, QIAO Y, et al. Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes. Nat. Commun., 2017,8(1):426.
DOI URL |
[46] |
AHN S, JUNG S Y, LEE S J. Self-assembly change by gold nanoparticle growth. J. Phys. Chem. C, 2011,115(45):22301-22308.
DOI URL |
[47] |
LILJESTRÖM V, CHEN C, DOMMERSNES P, et al. Active structuring of colloids through field-driven self-assembly. Current Opinion in Colloid & Interface Science, 2019,40:25-41.
DOI URL |
[48] |
YAN K, XIONG Y, WU S, et al. Electro-molecular assembly: electrical writing of information into an erasable polysaccharide medium. ACS Appl. Mater. Interfaces, 2016,8(30):19780-19786.
DOI URL |
[49] |
NIE Z, PETUKHOVA A, KUMACHEVA E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol., 2009,5(1):15-25.
DOI URL |
[50] |
XING L, XIANG J, ZHANG F, et al. Free-standing array of multi-walled carbon nanotubes on silicon (111) by a field-inducing self-assembly process. Journal of Nanoscience and Nanotechnology, 2010,10:6376-6382.
DOI URL |
[51] | XING L, LI F, XIANG J, et al. Single walled carbon nanotubes (SWCNTs) assembled site-selectively on flexible substrate. Key Engineering Materials, 2010,434:761-763. |
[52] |
MA Y, ZHAO W, SHE P, et al. Electric field induced molecular assemblies showing different nanostructures and distinct emission colors. Small Methods, 2019,3:1900718.
DOI URL |
[53] |
CHANG H. Fields external to open-structure magnetic devices represented by ellipsoid or spheroid. British Journal of Applied Physics, 1961,12(4):160-163.
DOI URL |
[54] |
WANG L, DONG S, HAO J. Recent progress of magnetic surfactants: self-assembly, properties and functions. Current Opinion in Colloid & Interface Science, 2018,35:81-90.
DOI URL |
[55] |
ABRAMSON S, DUPUIS V, NEVEU S, et al. Preparation of highly anisotropic cobalt ferrite/silica microellipsoids using an external magnetic field. Langmuir, 2014,30(30):9190-9200.
DOI URL |
[56] |
SINGH G, CHAN H, BASKIN A, et al. Self-assembly of magnetite nanocubes into helical superstructures. Science, 2014,345(6201):1149-1153.
DOI URL |
[57] |
LUO Z, EVANS B A, CHANG C. Magnetically actuated dynamic iridescence inspired by the neon tetra. ACS Nano, 2019,13(4):4657-4666.
DOI URL |
[58] | JI S, XU L, FU X, et al. Light- and metal ion-induced self- assembly and reassembly based on block copolymers containing a photoresponsive polypeptide segment. Macromolecules, 2019,52(12). |
[59] |
HE J, CAO J, CHEN Y, et al. Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett., 2020,9(4):533-539.
DOI URL |
[60] | CHEN L, XU M, HU J, et al. Light-initiated in situ self-assembly (Lisa) from multiple homopolymers. Macromolecules, 2017,9(4):3540-3557. |
[61] |
CHEN J, YUE X, XIAO Z, et al. In-situ synthesis of hydrophobic polyurethane ternary composite induced by hydroxyethyl cellulose through a green method for efficient oil removal. Polymers, 2020,12:509-520.
DOI URL |
[62] | CHEN J, XIANG J, YUE X, et al. Synthesis of a superhydrophobic polyvinyl alcohol sponge using water as the only solvent for continuous oil-water separation. Journal of Chemistry, 2019,2019:7153109-7153116. |
[63] |
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006,311:189-193.
DOI URL |
[64] |
BRYANT M A, CROOKS R M. Determination of surface pKa values of surface-confined molecules derivatized with pH-sensitive pendant groups. Langmuir, 1993,9(2):385-387.
DOI URL |
[65] |
TOKUHISA HIDEO, ZHAO M Q, BAKER L A, et al. Preparation and characterization of dendrimer monolayers and dendrimer alkanethiol mixed monolayers adsorbed to gold. J. Am. Chem. Soc., 1998,120:4492-4501.
DOI URL |
[66] |
JAEBEOM, LEE, ALEXANDER, et al. Nanoparticle assemblies with molecular springs: a nanoscale thermometer. Angew. Chem. Int. Ed., 2005,44:7439-7442.
DOI URL |
[67] |
ELGHANIAN R, STORHOFF J J, MUCIC R C, et al. Selective colorimetric detection of polynucleotides based on the distance- dependent optical properties of gold nanoparticles. Science, 1997,277(5329):1078-1081.
DOI URL |
[68] |
LEE J, HERNANDEZ P, LEE J, et al. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength- based protein detection. Nat. Mater., 2007,6(4):291-295.
DOI URL |
[69] | CHOI Y, HO N H, TUNG C H. Sensing phosphatase activity by using gold nanoparticles. Angew. Chem. Int. Ed., 2007,46:707-709. |
[70] | LI H, ROTHBERG L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004,101:14036-14039. |
[71] | SÖNNICHSEN C, REINHARD B, LIPHARDT J, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol., 2005,23:741-745. |
[72] | REINHARD B, SHEIKHOLESLAMI S, MASTROIANNI A, et al. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2007,104:2667-2672. |
[73] | LIU G, YIN Y, KUNCHAKARRA S, et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat. Nanotechnol., 2006,1:47-52. |
[74] | ZHANG D, ZONG X, WU Z, et al. Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity sensing applications. ACS Appl. Mater. Interfaces, 2018,10:32631-32639. |
[75] | YANG H M, MA S, YANG G J, et al. Synthesis of La2O3 doped Zn2SnO4 hollow fibers by electrospinning method and application in detecting of acetone. Applied Surface Science, 2017,425:585-593. |
[76] | CHEN Z, CAO M, HU C. Novel Zn2SnO4 hierarchical nanostructures and their gas sensing properties toward ethanol. The Journal of Physical Chemistry C, 2011,115:5522-5529. |
[77] | WANG W, CHAI H, WANG X, et al. Ethanol gas sensing performance of Zn2SnO4 nanopowder prepared via a hydrothermal route with different solution pH values. Appl. Surf. Sci., 2015,341:43-47. |
[78] | CHANG X, ZHOU Z, CONGDI S, et al. Coordination-driven self-assembled metallacycles incorporating pyrene: fluorescence mutability, tunability, and aromatic amine sensing. J. Am. Chem. Soc., 2019,141:1757-1765. |
[79] | HE Y, WANG R, JIAO T, et al. Facile preparation of self- assembled layered double hydroxide-based composite dye films as new chemical gas sensors. ACS Sustain. Chem. Eng., 2019,7(12):10888-10899. |
[80] | ROSSI N, GROSS B, DIRNBERGER F, et al. Magnetic force sensing using a self-assembled nanowire. Nano Letters, 2019,19:930-936. |
[81] | LI M, BHILADVALA R B, MORROW T J, et al. Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotechnol., 2008,3(2):88-92. |
[82] | LISUNOVA Y, HEIDLER J, LEVKIVSKYI I, et al. Optimal ferromagnetically-coated carbon nanotube tips for ultra-high resolution magnetic force microscopy. Nanotechnology, 2013,24(10):105705. |
[83] | LI X, YANG T, YANG Y, et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater., 2016,26:1322-1329. |
[84] | YANG Y, XIAOYU W, QIANLING C, et al. Self-assembly of fluorescent organic nanoparticles for iron (iii) sensing and cellular imaging. ACS Appl. Mater. Interfaces, 2016,8(11):7440-7448. |
[85] | RUIBO Z, TANG Q, WANG S, et al. Self-assembly of enzyme-like nanofibrous g-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater., 2018,30:1706887. |
[86] | TAO Y, CHU F, GU X, et al. A novel electrochemical chiral sensor for tyrosine isomers based on a coordination-driven self-assembly. Sensors and Actuators B: Chemical, 2017,255:255-261. |
[87] | KNEIPP J, KNEIPP H, KNEIPP K. SERS-a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev., 2008,37:1052-1060. |
[88] | LIU K, ZHAO N, KUMACHEVA E. Self-assembly of inorganic nanorods. Chem. Soc. Rev., 2011,40(2):656-671. |
[89] | MA Y, HUANG Z, LI S, et al. Surface-enhanced Raman spectroscopy on self-assembled Au nanoparticles arrays for pesticides residues multiplex detection under complex environment. Nanomaterials, 2019,9:426. |
[90] | MAO M, ZHOU B, TANG X, et al. Natural deposition strategy for interfacial, self-assembled, large-scale, densely packed, monolayer film with ligand exchanged gold nanorods for in situ surface enhanced Raman scattering drug detection. Chemistry-A European Journal, 2018,24(16):4094-4102. |
[91] | ZHANG Y, TENG Y, REN Z, et al. Water/oil interfacial self-assembled gold nanoarrays modified on transparent tape for in situ surface-enhanced Raman scattering. Plasmonics, 2019,14(5):1105-1111. |
[92] | TIAN Y, ZHANG H, XU L, et al. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection. Optics Letters, 2018,43(4):635-638. |
[93] | WANG L, QI H, CHEN L, et al. Self-assembled Ag-Cu2O nanocomposite films at air-liquid interfaces for surface-enhanced Raman scattering and electrochemical detection of H2O2. Nanomaterials, 2018,8(5):332-342. |
[94] | MILLIKEN S, FRASER J, POIRIER S, et al. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018,196:222-228. |
[95] | TIAN X D, LIN Y, DONG J C, et al. Synthesis of Ag nanorods with highly tunable plasmonics toward optimal surface-enhanced Raman scattering substrates self-assembled at interfaces. Advanced Optical Materials, 2017,5:222-228. |
[96] | FREEMAN R, GRABAR K, ALLISON K, et al. Self-assembled metal colloid monolayers: an approach to sers substrates. Science, 1995,267:1629-1632. |
[97] | CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998,27(4):241-250. |
[98] | ZHANG B, WANG H S, LU L, et al. Large-area silver coated silicon nanowire arrays for molecular sensing using surface enhanced Raman spectroscopy. Adv. Funct. Mater., 2008,18:2348-2355. |
[99] | POTARA M, MANIU D, ASTILEAN S. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology, 2009,20(31):315602. |
[100] | CONG S, YUAN Y, CHEN Z, et al. Noble metal-comparable sers enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun., 2015,6:7800. |
[101] | LAN C, ZHAO J, ZHANG L, et al. Self-assembled nanoporous graphene quantum dot-Mn3O4 nanocomposites for surface- enhanced Raman scattering based identification of cancer cells. RSC Adv., 2017,7:18658-18667. |
[102] | YI K, WANG H, LU Y, et al. Enhanced Raman scattering by self-assembled silica spherical microparticles. Journal of Applied Physics, 2007,101(6):063528. |
[103] | NG V M H, HUANG H, ZHOU K, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A, 2016,5(7):3039-3068. |
[104] | CHEN K, YAN X, LI J, et al. Preparation of self-assembled composite films constructed by chemically-modified MXene and dyes with surface-enhanced Raman scattering characterization. Nanomaterials, 2019,9:284. |
[105] | LIU P, PAN X, YANG W, et al. Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation. Materials Letters, 2012,75:118-121. |
[106] | ZHOU Y, HUANG W, LIU J, et al. Self-assembly of hyperbranched polymers and its biomedical applications. Adv. Mater., 2010, 22(41):4567-4590. |
[107] | KIM B S, CHOI J W. Polyelectrolyte multilayer microcapsules: self-assembly and toward biomedical applications. Biotechnology and Bioprocess Engineering, 2007,12(4):323-332. |
[108] | ZHOU J, PISHKO M, LUTKENHAUS J. Thermo-responsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir, 2014,30(20):5903-5910. |
[109] | PATEL D, RANA D, ASWAL V, et al. Influence of graphene on self-assembly of polyurethane and evaluation of its biomedical properties. Polymer, 2015,65:183-192. |
[110] | ZHAO H, HE W, WANG Y, et al. Biomineralization of large hydroxyapatite particles using ovalbumin as biosurfactant. Materials Letters, 2008,62(20):3603-3605. |
[111] | SAMANO E, PILO-PAIS M, GOLDBERG S, et al. Self- assembling DNA templates for programmed artificial biomineralization. Soft Matter, 2011,7(7):3240-3245. |
[112] | GRÖGER C, LUTZ K, BRUNNER E. Biomolecular self-assembly and its relevance in silica biomineralization. Cell Biochemistry and Biophysics, 2008,50(1):23-39. |
[113] | GUNGORMUS M, BRANCO M, FONG H, et al. Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials, 2010,31(28):7266-7274. |
[114] | ZERFASS C, BRAUKMANN S, NIETZSCHE S, et al. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization. Protein Expression and Purification, 2014,108:1-8. |
[115] | NEGAH S, KHAKSAR Z, ALIGHOLI H, et al. Enhancement of neural stem cell survival, proliferation, migration, and differentiation in a novel self-assembly peptide nanofibber scaffold. Molecular Neurobiology, 2016: 54. |
[116] | OUBERAI M M, GOMES DOS SANTOS A L, MADALLI S, et al. Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat. Commun., 2017,8(1):1026. |
[117] | CHEN C, HU J, ZHANG S, et al. Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials, 2012,33:592-603. |
[118] | CHEN C, PAN F, ZHANG S, et al. Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules, 2010,11:402-411. |
[119] | BAI J, CHEN C, WANG J, et al. Enzymatic regulation of self- assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces, 2016,8:15093-102. |
[120] | CHEN C, ZHANG Y, FEI R, et al. Hydrogelation of the short self-assembling peptide I3QGK regulated by transglutaminase and use for rapid hemostasis. ACS Appl. Mater. Interfaces, 2016,8(28):17833-17841. |
[121] | HU Z, PANTOŞ G D, KUGANATHAN N, et al. Interactions between amino acid-tagged naphthalenediimide and single walled carbon nanotubes for the design and construction of new bioimaging probes. Adv. Funct. Mater., 2012. 22(3):503-518. |
[122] | HU Z, ARROWSMITH R L, TYSON J A, et al. A fluorescent Arg-Gly-Asp (Rgd) peptide-naphthalenediimide (NDI) conjugate for imaging integrin αvβ3 in vitro. Chem. Comm., 2015,51(32):6901-6904. |
[123] | MCCLURE S A, WORFOLK B J, RIDER D A, et al. Electrostatic layer-by-layer assembly of CdSe nanorod/polymer nanocomposite thin films. ACS Appl. Mater. Interfaces, 2010,2(1):219-229. |
[124] | GUPTA S, ZHANG Q, EMRICK T, et al. “Self-corralling” nanorods under an applied electric field. Nano Letters, 2006,6(9):2066-2069. |
[125] | RIVEST J B, SWISHER S L, FONG L K, et al. Assembled monolayer nanorod heterojunctions. ACS Nano, 2011,5(5):3811-3816. |
[126] | WANG W, CHAU Y. Self-Assembled peptide nanorods as building blocks of fractal patterns. Soft Matter, 2009,5(24):4893-4898. |
[127] | LI Z, XING L, XIANG J, et al. Morphology controlling of calcium carbonate by self-assembled surfactant micelles on pet substrate. RSC Advances, 2014,4(59):31210. |
[128] | RECHES M, GAZIT E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003,300(5619):625-627. |
[129] | RECHE S, MEITA L, GAZI T, et al. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003,299:1877-1881. |
[130] | MURRAY, ROYCE W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev., 2008,108(7):2688-2720. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 李世奇, 鲍群群, 胡萍, 施剑林. 基于乙二胺四乙酸插层锌铝双金属氢氧化物的晚期肿瘤抗转移免疫治疗研究[J]. 无机材料学报, 2024, 39(9): 1044-1052. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||