| [1] | LI P L, HAN F X, CAO W W, et al. Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair. Applied Materials Today, 2020,6(19):100601. | 
																													
																						| [2] | ZHANG Y, CHANG M L, BAO F, et al. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale, 2019,11(13):6315-6333. DOI    
																																					URL
 | 
																													
																						| [3] | NING C, WANG X, LI L, et al. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Chemical Research in Toxicology, 2015,28(9):1815-1822. DOI    
																																					URL
 | 
																													
																						| [4] | TAN S X, TAN S Z, LIU Y L, et al. Preparation and antibacterial property of copper-loaded activated carbon microspheres. Journal of Inorganic Materials, 2010,25(3):299-305. DOI    
																																					URL
 | 
																													
																						| [5] | WU C T, ZHOU Y H, XU M C, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013,34(2):422-433. DOI    
																																					URL
 | 
																													
																						| [6] | TIAN T, WU C T, CHANG J. Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi4O10, Cup) bioceramics. RSC Advances, 2016,6(51):45840-45849. DOI    
																																					URL
 | 
																													
																						| [7] | 孔妮. 掺铜硅酸钙生物陶瓷的制备与表征及其促血管化性能的研究. 上海: 上海交通大学硕士学位论文, 2015. | 
																													
																						| [8] | KONG N, LIN K L, LI H Y, et al. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. Journal of Materials Chemistry B, 2014,2(8):1100-1110. DOI    
																																					URL
 | 
																													
																						| [9] | YANG Z J, LONG T, RAN L W, et al. Molybdenum's biological function and roles in animal production. Journal of Henan University of Science and Technology (Agricultrual Science), 2004(2):40-43. | 
																													
																						| [10] | WU M J. Molybdenum and human health. Studies of Trace Elements and Health, 2006,5(23):66-67. | 
																													
																						| [11] | WANG Q X. Trace element molybdenum and human health. Studies of Trace Elements and Health, 2003,4(20):58-59. | 
																													
																						| [12] | LIU M. The effect of molybdenum on human health. China Molybdenum Industry, 2001,5(25):43-45. | 
																													
																						| [13] | 田瑶. 四硫代钼酸铵抑制顺铂与人铜伴侣蛋白Atoxl的相互作用. 合肥: 中国科学技术大学硕士学位论文, 2018. | 
																													
																						| [14] | ALVAREZ H M, XUE Y, ROBINSON C D, et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science, 2010,327(5963):331-334. DOI    
																																					URL
 | 
																													
																						| [15] | PAN Q, KLEER C G, VAN GOLEN K L, et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Research, 2002,62(17):4854-4859. | 
																													
																						| [16] | CHAN N, WILLIS A, KORNHAUSER N, et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clinical Cancer Research, 2017,23(3):666-676. DOI    
																																					URL
 | 
																													
																						| [17] | MIAO Z Z, LI G W, LIU C Z, et al. Study on antibacterial properties of copper-loaded chitosan particles. Journal of Henan Institute of Science and Technology, 2010,38(2):78-80. | 
																													
																						| [18] | XU Q, CHANG M L, ZHANG Y, et al. PDA/Cu bioactive hydrogel with "hot ions effect" for inhibition of drug-resistant bacteria and enhancement of infectious skin wound healing. ACS Applied Materials & Interfaces, 2020,12(28):31255-31269. | 
																													
																						| [19] | LI J, ZHAI D, LU F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater., 2016,36:254-266. DOI    
																																					URL
 |