无机材料学报 ›› 2020, Vol. 35 ›› Issue (1): 112-118.DOI: 10.15541/jim20190298 CSTR: 32189.14.10.15541/jim20190298
所属专题: MAX相和MXene材料; 2020年能源材料论文精选(二):超级电容器; MXene材料专辑(2020~2021); 【虚拟专辑】超级电容器(2020~2021)
张天宇1,崔聪1,2,程仁飞1,2,胡敏敏1,2,王晓辉1()
收稿日期:
2019-06-20
修回日期:
2019-07-31
出版日期:
2020-01-20
网络出版日期:
2019-10-25
作者简介:
张天宇(1996-), 男, 硕士研究生. E-mail:tyzhang@vip.jiangnan.edu.cn
ZHANG Tian-Yu1,CUI Cong1,2,CHENG Ren-Fei1,2,HU Min-Min1,2,WANG Xiao-Hui1()
Received:
2019-06-20
Revised:
2019-07-31
Published:
2020-01-20
Online:
2019-10-25
About author:
ZHANG Tian-Yu(1996-), male, Master candidate. E-mail:tyzhang@vip.jiangnan.edu.cn
摘要:
MXene是一种新型二维过渡金属碳/氮化物, 具有优异电化学性能的赝电容型超级电容器电极材料。本研究尝试用同步氨化/碳化制备MXene平面多孔电极。以滤纸为多孔平面模板, 通过浸渍-烘干的手段把MXene固定在滤纸的纤维上, 然后在氨气的气氛中热处理, 得到了MXene/C平面多孔复合电极。分析结果表明: MXene纳米片均匀包覆在由滤纸碳化形成的碳纤维上。当浸渍5次时, 在2 mV/s的扫速下测试, 制备出的复合电极的面积比电容达到403 mF/cm 2。在电流密度为10 mA/cm 2下进行恒流充放电循环测试2500次后, 比电容仍然与初始电容几乎相同, 表现出良好的倍率性能和循环稳定性。在不使用高分子粘合剂和金属集流体的情况下, 同步氨化/碳化法制备出的MXene/C平面多孔复合电极表现出优良的电化学性能。
中图分类号:
张天宇, 崔聪, 程仁飞, 胡敏敏, 王晓辉. 同步氨化/碳化法制备MXene/C平面多孔复合电极[J]. 无机材料学报, 2020, 35(1): 112-118.
ZHANG Tian-Yu, CUI Cong, CHENG Ren-Fei, HU Min-Min, WANG Xiao-Hui. Fabrication of Planar Porous MXene/Carbon Composite Electrodes by Simultaneous Ammonization/Carbonization[J]. Journal of Inorganic Materials, 2020, 35(1): 112-118.
图1 (a)Ti3AlC2多孔体、Ti3C2Tx悬浮液的光学照片和TEM照片(插图为MXene悬浮液的丁达尔效应); (b)同步氨化/碳化法制备MXene/C平面多孔电极的过程
Fig. 1 (a) Optical photographs of porous Ti3AlC2 monolith, aqueous suspension and TEM image of Ti3C2Tx MXene with inset showing the Tyndall effect of MXene; and (b) fabrication process of MXene/carbon planar porous electrode by simultaneous ammonization/carbonization
图2 Ti3C2Tx MXene/C平面多孔电极的组成及结构 (a) XRD patterns; (b) Square resistance of planar porous electrode vs immersion times after simultaneous ammonization/carbonization. Inset shows the dependence of MXene load after simultaneous ammonization/carbonization on immersion times
Fig. 2 Composition and structure of Ti3C2Tx MXene/carbon planar porous electrode
图3 Ti3C2Tx平面多孔电极表面的SEM照片(a)和同步氨化/碳化后Ti3C2Tx的高角环形暗场像HAADF照片(b)
Fig. 3 SEM images of surface morphology of Ti3C2Tx MXene planar electrode (a) and High-Angle Annular Dark Field (HAADF) image of Ti3C2Tx MXene after simultaneous ammonization/carbonization (b)
图4 Ti3C2Tx MXene/C平面多孔电极的电容性能 (a-c) Areal capacitance versus voltage with respect to Ag/AgCl; (d) Areal capacitance as a function of scan rate
Fig. 4 Capacitance of Ti3C2Tx MXene/carbon planar porous electrodes
图5 Ti3C2Tx MXene/C平面多孔电极的面积比电容(a)和质量比电容(b)与文献值的比较
Fig. 5 Comparison of areal capacitance (a) and specific capacitance (b) among the values of Ti3C2Tx MXene/carbon planar porous electrode obtained in this work and those in the literature
图6 同步氨化/碳化法制备的Ti3C2Tx MXene/C平面多孔电极的循环稳定性 (a) Relationship between capacitance retention rate and cycle number; (b-c) GCD curves for (b) the first 10 cycles and (c) the last 11 cycles
Fig. 6 Cyclic stability of Ti3C2Tx MXene/carbon planar porous electrode prepared by means of simultaneous ammonization/carbonization
[1] |
MIRÓ P, AUDIFFRED M, HEINE T . An atlas of two-dimensional materials. Chemical Society Reviews, 2014,43(18):6537-6554.
DOI URL |
[2] |
XU M, LIANG T, SHI M , et al.Graphene-like two-dimensional materials.Chemical Reviews 2013,113(5):3766-3798.
DOI URL PMID |
[3] |
CAHANGIROV S, TOPSAKAL M, AKTURK E , et al.Two- and one-dimensional honeycomb structures of silicon and germanium. Physical Review Letters, 2009,102(23):236804.
DOI URL PMID |
[4] |
LALMI B, OUGHADDOU H, ENRIQUEZ H , et al.Epitaxial growth of a silicene sheet. Applied Physics Letters, 2010,97(22):223109.
DOI URL PMID |
[5] |
LIU H, NEAL A T, ZHU Z , et al.Phosphorene: an unexplored 2D semiconductor with a high hole mobility.ACS Nano, 2014,8(4):4033-4041.
DOI URL PMID |
[6] |
ATACA C, SAHIN H, CIRACI S . Stable, single-layer MX2 transition- metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 2012,116(16):8983-8999.
DOI URL |
[7] |
ZHOU Y C, XIANG H M, WANG X H , et al.Electronic structure and mechanical properties of layered compound YB2C2: a promising precursor for making two dimensional (2D) B2C2 nets.Journal of Materials Science & Technology, 2017,33(9):1044-1054.
DOI URL PMID |
[8] |
NICOLOSI V, CHHOWALLA M, KANATZIDIS M G , et al.Liquid exfoliation of layered materials.Science, 2013,340(6139):1226419.
DOI URL PMID |
[9] |
NAGUIB M, KURTOGLU M, PRESSER V , et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Advanced Materials, 2011,23(37):4248-4253.
DOI URL PMID |
[10] |
MICHAEL N, OLHA M, JOSHUA C , et al.Two-dimensional transition metal carbides.ACS Nano, 2012,6(2):1322-1331.
DOI URL PMID |
[11] |
ZHANG X, XU J, WANG H , et al.Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2..Angewandte Chemie-International Edition, 2013,52(16):4361-4365.
DOI URL PMID |
[12] |
MASHTALIR O, NAGUIB M, DYATKIN B , et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid..Materials Chemistry and Physics, 2013,139(1):147-152.
DOI URL |
[13] |
GHIDIU M, NAGUIB M, SHI C , et al.Synthesis and characterization of two-dimensional Nb4C3(MXene). Chemical Communications, 2014,50(67):9517-9520.
DOI URL |
[14] |
ZHOU J, ZHA X H, CHEN F Y , et al.A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5.Angewandte Chemie-International Edition, 2016,55(16):5008-5013.
DOI URL PMID |
[15] |
ANASORI B, LUKATSKAYA MR, GOGOTSI Y . 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017,2(2):16098.
DOI URL PMID |
[16] |
KHAZAEI M, RANJBAR A, ARAI M , et al.Electronic properties and applications of MXenes: a theoretical review..Journal of Materials Chemistry C, 2017,5(10):2488-2503.
DOI URL PMID |
[17] |
ZHU J, HA E, ZHAO G , et al.Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption..Coordination Chemistry Reviews, 2017,352:306-327.
DOI URL |
[18] |
HANTANASIRISAKUL K, GOGOTSI Y . Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 2018,30(52):1804779.
DOI URL PMID |
[19] |
LI X, WANG C, CAO Y , et al.Functional MXenes materials: progress of their applications..Chemistry-An Asian Journal, 2018,13(19):2742-2757.
DOI URL PMID |
[20] |
LIN H, CHEN Y, SHI J . Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Advanced Science, 2018,5(10):1800518.
DOI URL PMID |
[21] |
WANG H, WU Y, YUAN X , et al.Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges..Advanced Materials, 2018,30(12):1704561.
DOI URL PMID |
[22] |
DIAO J Y, HU M M, LIAN Z , et al.Ti3C2Tx MXene catalyzed ethylbenzene dehydrogenation: active sites and mechanism exploration from both experimental and theoretical aspects.ACS Catalysis, 2018,8(11):10051-10057.
DOI URL |
[23] |
YOON Y, LEE K, LEE H . Low-dimensional carbon and MXene- based electrochemical capacitor electrodes. Nanotechnology, 2016,27(17):172001.
DOI URL PMID |
[24] |
ZHANG X, ZHANG Z, ZHOU Z . MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018,27(1):73-85.
DOI URL PMID |
[25] |
PANG J, MENDES R G, BACHMATIUK A , et al.Applications of 2D MXenes in energy conversion and storage systems..Chemical Society Reviews, 2019,48(1):72-133.
DOI URL PMID |
[26] |
YANG Q, WANG Y, LI X , et al.Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices..Energy & Environmental Materials, 2018,1(4):183-195.
DOI URL PMID |
[27] |
WANG X H, ZHOU Y C . Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. Journal of Materials Chemistry, 2002,12(3):455-460.
DOI URL |
[28] |
CHENG R F, HU T, ZHANG H , et al.Understanding the lithium storage mechanism of Ti3C2Tx MXene.Journal of Physical Chemistry C, 2019,123(2):1099-1109.
DOI URL |
[29] |
HU M M, CUI C, SHI C , et al.High-energy-density hydrogen-ion- rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule.ACS Nano, 2019,13(6):6899-6905.
DOI URL PMID |
[30] |
HU M M, LI Z J, ZHANG H , et al.Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance.Chemical Communications, 2015,51(70):13531-13533.
DOI URL PMID |
[31] | HU M M, LI Z J, LI G X , et al.All-solid-state flexible fiber-based MXene supercapacitors. Advanced Materials Technology, 2017,2(10):1700143. |
[32] |
HU M M, HU T, CHENG R F , et al.MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. Journal of Energy Chemistry, 2018,27(1):161-166.
DOI URL PMID |
[33] |
HU M M, LI Z J, HU T , et al.High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation.ACS Nano, 2016,10(12):11344-11350.
DOI URL PMID |
[34] |
HU M M, HU T, LI Z J , et al.Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene.ACS Nano, 2018,12(4):3578-3586.
DOI URL PMID |
[35] |
ZHU Y W, MURALI S, STOLLER M D , et al.Carbon-based supercapacitors produced by activation of graphene.Science, 2011,332(6037):1537-1541.
DOI URL |
[36] |
HU T, LI Z J, HU M M , et al.Chemical origin of termination- functionalized MXenes: Ti3C2T2 as a case study.Journal of Physical Chemistry C, 2017,121(35):19254-19261.
DOI URL PMID |
[37] |
YAN J, REN C E, MALESKI K , et al.Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017,27(30):1701264.
DOI URL |
[38] |
LUKATSKAYA M R, BAK S M, YU X Q , et al.Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy.Advanced Energy Materials, 2015,5(15):1500589
DOI URL |
[39] |
HU L B, PASTA M, LA MANTIA F , et al.Stretchable, porous, and conductive energy textiles.Nano Letters, 2010,10(2):708-714.
DOI URL PMID |
[40] |
PASTA M, LA MANTIA F, HU L B , et al.Aqueous supercapacitors on conductive cotton. Nano Research, 2010,3(6):452-458.
DOI URL |
[41] |
WANG Y S, LI S M, HSIAO S T , et al.Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon, 2014,73:87-98.
DOI URL |
[42] |
ZHOU Q L, YE X K, WAN Z Q , et al.A three-dimensionalflexible supercapacitor with enhancedperformance based on lightweight, conductive graphene-cotton fabricelectrode.Journal of Power Sources, 2015,296:186-196.
DOI URL |
[43] |
YOO J E, BAE J . High-performance fabric-based supercapacitors using water-dispersible polyaniline-poly(2-acrylamido-2-methyl- 1-propanesulfonic acid). Macromolecular Research, 2015,23(8):749-754.
DOI URL |
[44] |
JOST K, PEREZ C R, MCDONOUGH J K , et al.Carbon coated textiles for flexible energy storage.Energy & Environmental Science, 2011,4(12):5060-5067.
DOI URL PMID |
[45] |
KURRA N, AHMED B, GOGOTSI Y , et al.MXene-on-paper coplanar microsupercapacitors..Advanced Energy Materials, 2016,6(24):1600969.
DOI URL |
[46] |
FRACKOWIAK E, DELPEUX S, JUREWICZ K , et al.Enhanced capacitance of carbon nanotubes through chemical activation.Chemical Physics Letters, 2002,361(1/2):35-41.
DOI URL PMID |
[47] |
DU X, ZHAO W, WANG Y , et al.Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresource Technology, 2013,149:31-37.
DOI URL |
[48] |
WANG Y, SHI Z, HUANG Y , et al.Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 2009,113(30):13103-13107.
DOI URL PMID |
[49] |
WANG P, ZHAO Y J, WEN L X ,et al. Ultrasound-microwave- assisted synthesis of MnO2 supercapacitor electrode materials.Industrial & Engineering Chemistry Research, 2014,53(52):20116-20123.
DOI URL PMID |
[50] |
ZHENG J P, CYGAN P J, JOW T R . Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society, 1995,142(8):2699-2703.
DOI URL PMID |
[51] |
SNOOK G A, KAO P, BEST A S . Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011,196(1):1-12.
DOI URL |
[1] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[2] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[3] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[4] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[5] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[6] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[7] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[8] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[9] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[10] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[11] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[12] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[13] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[14] | 蔡凯, 靳志文. 基于二维钙钛矿(PEA)2PbI4的光电探测器[J]. 无机材料学报, 2023, 38(9): 1069-1075. |
[15] | 冒爱琴, 陆文宇, 贾洋刚, 王冉冉, 孙静. 柔性压电器件及其可穿戴应用[J]. 无机材料学报, 2023, 38(7): 717-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||