无机材料学报 ›› 2019, Vol. 34 ›› Issue (12): 1325-1333.DOI: 10.15541/jim20190039 CSTR: 32189.14.10.15541/jim20190039
收稿日期:
2019-01-18
修回日期:
2019-03-08
出版日期:
2019-12-20
网络出版日期:
2019-05-29
作者简介:
陈一凡(1995-), 女, 硕士研究生. E-mail: pzhcyf@qq.com
基金资助:
CHEN Yi-Fan1,TANG Xiao-Ning1(),ZHANG Bin2,LUO Yong1,LI Yang1
Received:
2019-01-18
Revised:
2019-03-08
Published:
2019-12-20
Online:
2019-05-29
Supported by:
摘要:
采用溶胶-凝胶法制备载体SiO2, 并通过水解法制备出负载型TiO2@SiO2复合光催化抗菌材料, 采用SEM、XRD、BET、FT-IR、XPS和粒度仪对材料进行表征和分析。在UVA紫外光照下, 通过降解甲基橙溶液考察了复合材料的光催化性能, 在照射3 h后, 不同钛掺杂量复合材料的光催化降解率均能达到99.9%, 钛掺比为0.58时催化效率最高。通过平板涂布法检测了复合材料对大肠杆菌的抗菌效果, 发现抗菌性能随着钛含量的增加而提高, 在紫外照射条件下最高可达92%以上, 同时在可见光照射下也能表现出良好的抗菌性能。通过细菌荧光检测, 可以有效证明复合材料所产生的活性氧迁移到了细胞内部, 造成细胞体氧化损伤, 这是光催化材料抗菌机理研究的重要依据。
中图分类号:
陈一凡, 唐晓宁, 张彬, 罗勇, 李阳. TiO2@SiO2复合材料的制备及其光催化与抗菌性能的研究[J]. 无机材料学报, 2019, 34(12): 1325-1333.
CHEN Yi-Fan, TANG Xiao-Ning, ZHANG Bin, LUO Yong, LI Yang. TiO2@SiO2 Composites: Preparation and Photocatalytic Antimicrobial Performance[J]. Journal of Inorganic Materials, 2019, 34(12): 1325-1333.
Element | wt % | at % |
---|---|---|
Ti | 28.40 | 13.57 |
Si | 25.90 | 21.10 |
O | 45.70 | 65.33 |
表1 TiO2@SiO2复合材料元素含量分析结果
Table 1 Analysis of element content about TiO2-doped SiO2 composites
Element | wt % | at % |
---|---|---|
Ti | 28.40 | 13.57 |
Si | 25.90 | 21.10 |
O | 45.70 | 65.33 |
Sample | BET/(m2·g-1) | BJH Pore size/nm |
---|---|---|
0.58-TiO2@SiO2 | 177 | 12.4 |
SiO2 | 83 | 20.6 |
TiO2 | 115 | 4.4 |
表2 SiO2、TiO2和TiO2@SiO2的比表面积和BJH吸附平均孔径
Table 2 BET analysis and BJH adsorption pore size of SiO2, TiO2 and TiO2-doped SiO2 composites
Sample | BET/(m2·g-1) | BJH Pore size/nm |
---|---|---|
0.58-TiO2@SiO2 | 177 | 12.4 |
SiO2 | 83 | 20.6 |
TiO2 | 115 | 4.4 |
图8 不同Ti掺杂量TiO2@SiO2样品的光催化降解曲线
Fig. 8 Photocatalytic degradation of methyl orange by using TiO2-doped SiO2 with different Ti contents (1) 0.3-TiO2@SiO2; (2) 0.44-TiO2@SiO2; (3) 0.58-TiO2@SiO2; (4) 0.74-TiO2@SiO2; (5) 0.88-TiO2@SiO2
图9 UVA条件下SiO2、TiO2和不同钛掺杂量的TiO2@SiO2复合材料抗菌效果照片
Fig. 9 Antimicrobial effect of SiO2, TiO2 and TiO2-doped SiO2 composites with different Ti contents on E.coli under UVA irradiation
图10 UVA条件下不同钛掺杂量对TiO2@SiO2材料抗菌性能的影响
Fig. 10 Effect of the antimicrobial property using TiO2-doped SiO2 composites with different Ti contents under UVA irradiation
Lamp-house | Material | E.coli-BL21 | |
---|---|---|---|
Number (after 24 h) | Reduction of bacteria/% | ||
UVA | Blank | 833 | - |
SiO2 | 788 | 5.4 | |
0.58-TiO2@SiO2 | 163 | 80.5 | |
TiO2 | 586 | 29.6 | |
Visible light | Blank | 808 | - |
0.58-TiO2@SiO2 | 198 | 65.5 |
表3 不同光照条件下的抗菌性能结果
Table 3 Results of antibacterial activity with different irradiations
Lamp-house | Material | E.coli-BL21 | |
---|---|---|---|
Number (after 24 h) | Reduction of bacteria/% | ||
UVA | Blank | 833 | - |
SiO2 | 788 | 5.4 | |
0.58-TiO2@SiO2 | 163 | 80.5 | |
TiO2 | 586 | 29.6 | |
Visible light | Blank | 808 | - |
0.58-TiO2@SiO2 | 198 | 65.5 |
图12 TiO2、SiO2和0.58-TiO2@SiO2材料的荧光图谱
Fig. 12 Fluorescence spectra of TiO2, SiO2 and 0.58- TiO2@SiO2 Right diagram shows the values of fluorescence with an excitation wavelength of 492 nm and an emission wavelength of 504 nm
[1] | GAYA U I, ABDULLAH A H . Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008,9(1):1-12. |
[2] | ZHANG Q J, SUN C H, ZHAO Y , et al. Low Ag-doped titanium dioxide nanosheet films with outstanding antimicrobial property. Environmental science & technology, 2010,44(21):8270-8275. |
[3] | LINIC S, BARTEAU M . Heterogeneous catalysis of alkene epoxidation. Handbook of Heterogeneous Catalysis: Online, 2008: 3448-3464. |
[4] | BANERJEE S, GOPAL J, MURALEEDHARAN P , et al. Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Current Science, 2006,90(10):1378-1383. |
[5] | TANG F Q, HOU L P, GUO G S . Preparation of TiO2 nanometer powders. Journal of Inorganic Materials, 2001,16(4):615-619. |
[6] | MANDZY N, GRULKE E, DRUFFEL T . Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technology, 2005,160(2):121-126. |
[7] | XU Y H, LEI B, GUO L Q , et al. Preparation, characterization and photocatalytic activity of manganese doped TiO2 immobilized on silica gel. Journal of Hazardous Materials, 2008,160(1):78-82. |
[8] | HU C, WANG Y Z, TANG H X . Structure and photocatalytic performance of surface bond-conjugated TiO2/SiO2 Catalyst. Chinese Journal of Catalysis, 2001,22(2):185-188. |
[9] | SON S, HWANG S H, KIM C , et al. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013,5(11):4815-4820. |
[10] | KIM J, SONG K C, FONCILLAS S , et al. Dopants for synthesis of stable bimodally porous titania. Journal of the European Ceramic Society, 2001,21(16):2863-2872. |
[11] | GAO P, NG K, SUN D D . Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. Journal of Hazardous Materials, 2013,262:826-835. |
[12] | LUO X Y, HUANG R Y, ZHAO D F , et al. Preparation and photocatalytic performance of silver modified white carbon black doped TiO2. New Chemical Materials, 2017,45(2):152-154. |
[13] | LI Z J, HOU B, XU Y , et al. Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles. Journal of Colloid and Interface Science, 2005,288(1):149-154. |
[14] | ZHANG X, ZHANG F, CHAN K Y . Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Applied Catalysis A: General, 2005,284(1/2):193-198. |
[15] | MAUČEC D, ŠULIGOJ A, RISTIĆ A , et al. Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 2018,310:32-41. |
[16] | SHI W Z, GUO B S, XUE H Q . Preparation, photocatalytic property and antibacterial property of Ag@TiO2@SiO2 composite nanomaterials. Journal of Inorganic Materials, 2016,31(5):466-472. |
[17] | ZHANG S Q, WEI Y F . Recent advances in fluorescent probes for the detection of reactive oxygen species. Chinese Journal of Spectroscopy Laboratory, 2009,26(4):794-802. |
[18] | RANJAN S, RAMALINGAM C . Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environmental Chemistry Letters, 2016,14(4):487-494. |
[19] | RUBIO J, OTEO J L, VILLEGAS M , et al. Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide. Journal of Materials Science, 1997,32(3):643-652. |
[20] | DUTOIT D, SCHNEIDER M, BAIKER A . Titania-silica mixed oxides: I. Influence of Sol-Gel and drying conditions on structural properties. Journal of Catalysis, 1995,153(1):165-176. |
[21] | GAO X T, WACHS I E . Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catalysis Today, 1999,51(2):233-254. |
[22] | DAVIS R J, LIU Z F . Titania-silica: a model binary oxide catalyst system. Chemistry of Materials, 1997,9(11):2311-2324. |
[23] | MURASHKEVICH A N, LAVITSKAYA A S, BARANNIKOVA T I , et al. Infrared absorption spectra and structure of TiO2-SiO2 composites. Journal of Applied Spectroscopy, 2008,75(5):730-734. |
[24] | MIAO Y C, XU X L, LIU K Q , et al. Preparation of novel Cu/TiO2 mischcrystal composites and antibacterial activities for Escherichia coli under visible light. Ceramics International, 2017,43(13):9658-9663. |
[25] | HE C X, TIAN B Z, ZHANG J L . Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. Journal of Colloid and Interface Science, 2010,344(2):382-389. |
[26] | ULLAH S, FERREIRA-NETO E P, PASA A A , et al. Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Applied Catalysis B: Environmental, 2015,179:333-343. |
[27] | SING K S . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Applied Chemistry, 1985,57(4):603-619. |
[28] | YANG W, FENG Y Y, XIAO D , et al. Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. International Journal of Energy Research, 2015,39(6):805-811. |
[29] | STANDARD A . G5-94 standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements. Annual Book of ASTM Standards, 1994,3:73-79. |
[30] | FU X Z, CLARK L A, YANG Q , et al. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environmental Science Technology, 1996,30(2):647-653. |
[31] | ZHANG M H, SHI L Y, YUAN S , et al. Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. Journal of Colloid Interface Science, 2009,330(1):113-118. |
[32] | WANG J M, LI C, ZHUANG H , et al. Photocatalytic degradation of methylene blue and inactivation of gram-negative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control, 2013,34(2):372-377. |
[33] | MOHAPATRA P, PARIDA K . Photocatalytic activity of sulfate modified titania 3: decolorization of methylene blue in aqueous solution. Journal of Molecular Catalysis A: Chemical, 2006,258(1/2):118-123. |
[34] | YU Y F, ZHENG S, CHAI L Y , et al. Progress of study on the anti-bacterial materials of Ag-embedding titanium oxide. Techniques and Equipment for Environmental Pollution Control, 2004,5(12):16-20. |
[35] | XU Y M, YU H, HE Q Z , et al. Synthesis, characterization and antibacterial properties of core-shell structure Ag+-loaded nano-titania doped with rare earth ion antibacterial agent. Chinese Rare Earths, 2009,30(2):65-70. |
[36] | YANG Y, DENG G D, YI Q , et al. Nanometer TiO2/SiO2 composite antibacterial materials for foodstuffs. Fine Chemicals, 2001,18(12):703-706. |
[37] | ADITYA A, CHATTOPADHYAY S, JHA D , et al. Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Applied Materials & Interfaces, 2018,10(18):15401-15411. |
[38] | HAN C, LEI Y P, WANG Y D . Recent progress on nano- heterostructure photocatalysts for solar fuels generation. Journal of Inorganic Materials, 2015,30(11):1121-1130. |
[1] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[2] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[3] | 王兆阳, 秦鹏, 蒋胤, 冯小波, 杨培志, 黄富强. 三明治结构钌插层二氧化钛光催化四环素降解性能研究[J]. 无机材料学报, 2024, 39(4): 383-389. |
[4] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[5] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[6] | 张志民, 葛敏, 林翰, 施剑林. 新型磁电催化纳米粒子的活性氮释放与抗菌性能研究[J]. 无机材料学报, 2024, 39(10): 1114-1124. |
[7] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[8] | 李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150. |
[9] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[10] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[11] | 王磊, 李建军, 宁军, 胡天玉, 王洪阳, 张占群, 武琳馨. CoFe2O4@Zeolite催化剂活化过一硫酸盐对甲基橙的强化降解: 性能与机理[J]. 无机材料学报, 2023, 38(4): 469-476. |
[12] | 谢家晔, 李力文, 朱强. 三种临床盖髓剂的抗菌性及生物相容性对比研究[J]. 无机材料学报, 2023, 38(12): 1449-1456. |
[13] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[14] | 杜佳恒, 范鑫丽, 肖东琴, 尹一然, 李忠, 贺葵, 段可. 电泳沉积制备微弧氧化钛表面氧化镁涂层及其生物学性能[J]. 无机材料学报, 2023, 38(12): 1441-1448. |
[15] | 孙晨, 赵昆峰, 易志国. 甲烷完全催化氧化研究进展[J]. 无机材料学报, 2023, 38(11): 1245-1256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||