无机材料学报 ›› 2019, Vol. 34 ›› Issue (9): 961-966.DOI: 10.15541/jim20180547 CSTR: 32189.14.10.15541/jim20180547
朱本必1,张旺1(),张志坚2,章建忠2,IMRAN Zada1,张荻1
收稿日期:
2018-11-23
修回日期:
2018-12-24
出版日期:
2019-09-20
网络出版日期:
2019-05-13
作者简介:
朱本必(1993-), 男, 硕士研究生. E-mail: zhubenbi@sjtu.edu.cn
基金资助:
ZHU Ben-Bi1,ZHANG Wang1(),ZHANG Zhi-Jian2,ZHANG Jian-Zhong2,IMRAN Zada1,ZHANG Di1
Received:
2018-11-23
Revised:
2018-12-24
Published:
2019-09-20
Online:
2019-05-13
Supported by:
摘要:
以玻璃纤维布为基底, 以TiH2为原料, 通过简易的化学合成及溶胶-凝胶法制备了光热增强光催化性能的二氧化钛(B)/玻璃纤维布复合材料(B-T/GFC)。通过XRD、SEM和TEM检测合成材料的成分、结构和形貌, 采用分光光度计、光学接触角测量仪、太阳光模拟器对材料的性能进行了系统研究。结果表明: 该复合材料表面形成了锐钛矿晶型的黑色TiO2薄膜, 且晶体中存在厚度约为1 nm的无序层。同时该复合材料在250~2000 nm波长范围内具有较强的光吸收能力, 且具有强疏水性; 在 1 个太阳光强度下(1 kW/m 2), 相对于玻璃纤维布具有更强的光热能力; 其光催化降解切削废液中有机污染物(COD)的能力优于黑色TiO2(B-T)和P25, 光照2 h的降解率约为P25的2.3倍。由此可见, B-T/GFC复合材料具有优异的光热增强光催化性能, 具有广阔的应用前景。
中图分类号:
朱本必,张旺,张志坚,章建忠,IMRAN Zada,张荻. 光热增强光催化性能二氧化钛(B)/玻纤布复合研究[J]. 无机材料学报, 2019, 34(9): 961-966.
ZHU Ben-Bi,ZHANG Wang,ZHANG Zhi-Jian,ZHANG Jian-Zhong,IMRAN Zada,ZHANG Di. Photothermal Enhanced Photocatalytic Properties of Titanium Dioxide (B)/Glass Fiber Cloth[J]. Journal of Inorganic Materials, 2019, 34(9): 961-966.
图3 B-T/GFC在不同倍数下的透射电镜照片(a,b), 高分辨率电子显微镜照片(c)及其SEAD图案(d)
Fig. 3 Different magnification TEM images (a,b), HRTEM image (c) of B-T/GFC , and SAED pattern of B-T/GFC (d)
图6 GFC样品(a~c)和B-T/GFC样品(d~f)以及在不同时间的红外热图像: GFC和B-T/GFC样品在光照60 min内的界面温度曲线图(g)以及图(c)和(f)中标记线的温度分布图(h)
Fig. 6 IR thermal images of GFC sample (a~c) and B-T/GFC sample (d-f) with light irradiation on for different time, (g) the surface temperature of the water of GFC and B-T/GFC samples after 60 min irradiation (g), and temperature profiles of the marked lines in the Fig. (c) and (f) (h)
图7 (a) B-T/GFC、P25/GFC和B-T粉末光催化降解曲线图, (b) B-T/GFC四次循环光催化降解曲线图
Fig. 7 (a) Photocatalytic decomposition of COD under solar light irradiation catalyzed by P25/GFC, B-T/GFC and B-T powder, and (b) cycling runs for the photocatalytic decomposition of COD catalyzed by B-T/GFC
[1] | ANSARI SAJID ALI, ANSARI MOHAMMAD OMAISH, CHO MOO HWAN . Facile and scale up synthesis of red phosphorus- graphitic carbon nitride heterostructures for energy and environment applications. Scientific Reports, 2016,6:27713. |
[2] | ZHANG TENG, LIN WENBIN . Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014,43(16):5982-5993. |
[3] | NGUYEN PHUONG T N, SALIM CHRIS, KURNIAWAN WINARTO ,et al. A non-hydrolytic Sol-Gel synthesis of reduced graphene oxide/TiO2 microsphere photocatalysts. Catalysis Today, 2014,230:166-173. |
[4] | LE CUNFF JÉRÔME, TOMAŠIĆ VESNA, WITTINE OZREN . Photocatalytic degradation of the herbicide terbuthylazine: preparation, characterization and photoactivity of the immobilized thin layer of TiO2/chitosan. Journal of Photochemistry and Photobiology A: Chemistry, 2015,309:22-29. |
[5] | SCHULTZ DANIELLE M, YOON TEHSHIK P . Solar synthesis: prospects in visible light photocatalysis. Science, 2014,343(6174):1239176. |
[6] | DAGHRIR RIMEH, DROGUI PATRICK, ROBERT DIDIER . Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 2013,52(10):3581-3599. |
[7] | PAKDEL ESFANDIAR, DAOUD WALID A, WANG XUNGAI . Assimilating the photo-induced functions of TiO2-based compounds in textiles: emphasis on the Sol-Gel process. Textile Research Journal, 2015,85(13):1404-1428. |
[8] | GAO MINMIN, ZHU LIANGLIANG, ONG WEI LI ,et al. Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catalysis Science & Technology, 2015,5(10):4703-4726. |
[9] | SUN PENG, XUE RUIYANG, ZHANG WANG ,et al. Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites. Catalysis Today, 2016,274:2-7. |
[10] | DONG HAORAN, ZENG GUANGMING, TANG LIN ,et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 2015,79:128-146. |
[11] | TONG ZHENWEI, YANG DONG, XIAO TIANXIONG ,et al. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chemical Engineering Journal, 2015,260:117-125. |
[12] | VAIANO V, SACCO O, SANNINO D ,et al. Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Applied Catalysis B: Environmental, 2015,170:153-161. |
[13] | WANG MENGYE, IOCCOZIA JAMES, SUN LAN ,et al. Inorganic- modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy & Environmental Science, 2014,7(7):2182-2202. |
[14] | ZHANG XING, LIU YANG, LEE SHUIT-TONG ,et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon- effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy & Environmental Science, 2014,7(4):1409-1419. |
[15] | GE MINGZHENG, LI QINGSONG, CAO CHUNYAN ,et al. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017,4(1):1600152. |
[16] | ELTERMANN MARKO, UTT KATHRIIN, LANGE SVEN ,et al. Sm3+ doped TiO2 as optical oxygen sensor material. Optical Materials, 2016,51:24-30. |
[17] | ZHU ZHEN, CHANG JIA-LUN, WU REN-JANG . Fast ozone detection by using a core-shell Au@TiO2 sensor at room temperature. Sensors and Actuators B: Chemical, 2015,214:56-62. |
[18] | REDDY KAKARLA RAGHAVA, HASSAN MAHBUB, GOMES VINCENT G . Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis A: General, 2015,489:1-16. |
[19] | SCHNEIDER JENNY, MATSUOKA MASAYA, TAKEUCHI MASATO ,et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014,114(19):9919-9986. |
[20] | KUMAR S GIRISH, DEVI L GOMATHI . Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A, 2011,115(46):13211-13241. |
[21] | ZADA IMRAN, ZHANG WANG, ZHENG WANGSHU ,et al. The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings. Scientific Reports, 2017,7(1):17277. |
[22] | CHEN XIAOBO, BURDA CLEMENS . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008,130(15):5018-5019. |
[23] | LEVINSON RONNEN, BERDAHL PAUL, AKBARI HASHEM . Solar spectral optical properties of pigments—Part I: Model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. Solar Energy Materials and Solar Cells, 2005,89(4):319-349. |
[24] | WANG ZHONG-SHENG, HUANG CHUN-HUI, HUANG YAN-YI ,et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chemistry of Materials, 2001,13(2):678-682. |
[25] | CUSHING SCOTT K, LI JIANGTIAN, BRIGHT JOESEPH ,et al. Controlling plasmon-induced resonance energy transfer and hot electron injection processes in Metal@TiO2 core-shell nanoparticles. The Journal of Physical Chemistry C, 2015,119(28):16239-16244. |
[26] | MOON SONG YI, NAIK BRUNDABANA, PARK JEONG YOUNG . Photocatalytic activity of metal-decorated SiO2@TiO2 hybrid photocatalysts under water splitting. Korean Journal of Chemical Engineering, 2016,33(8):2325-2329. |
[27] | RAWAL SHER BAHADUR, BERA SANDIPAN, LEE DAEKI ,et al. Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catalysis Science & Technology, 2013,3(7):1822-1830. |
[28] | TAN TZE HAO, SCOTT JASON, NG YUN HAU ,et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold. ACS Catalysis, 2016,6(3):1870-1879. |
[29] | FEI JINBO, LI JUNBAI . Controlled preparation of porous TiO2- Ag nanostructures through supramolecular assembly for plasmon- enhanced photocatalysis. Advanced Materials, 2015,27(2):314-319. |
[30] | LI JINXING, LIU WENJUAN, WANG JIYUAN , et al. Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Advanced Functional Materials, 2017, 27(24): 1700598-1-8. |
[31] | CHEN XIAOBO, LIU LEI, HUANG FUQIANG . Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 2015,44(7):1861-1885. |
[32] | CHEN XIAOBO, LIU LEI, YU PETER Y ,et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011: 1200448. |
[33] | HU YUN HANG . A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angewandte Chemie International Edition, 2012,51(50):12410-12412. |
[34] | GRABSTANOWICZ LAUREN R, GAO SHANMIN, LI TAO ,et al. Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorganic Chemistry, 2013,52(7):3884-3890. |
[35] | AYATI ALI, AHMADPOUR ALI, BAMOHARRAM FATEMEH F ,et al. A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere, 2014,107:163-174. |
[36] | WANG ZHOU, YANG CHONGYIN, LIN TIANQUAN ,et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials, 2013,23(43):5444-5450. |
[37] | ZHANG LIANBIN, TANG BO, WU JINBO ,et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Advanced Materials, 2015,27(33):4889-4894. |
[38] | GAN ZHIXING, WU XINGLONG, MENG MING ,et al. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano, 2014,8(9):9304-9310. |
[1] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[2] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[3] | 王兆阳, 秦鹏, 蒋胤, 冯小波, 杨培志, 黄富强. 三明治结构钌插层二氧化钛光催化四环素降解性能研究[J]. 无机材料学报, 2024, 39(4): 383-389. |
[4] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[5] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[6] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[7] | 李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150. |
[8] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
[9] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[10] | 孟波, 肖刚, 王秀丽, 涂江平, 谷长栋. 离子热合成锰基氧化物及其可逆储热性能[J]. 无机材料学报, 2023, 38(7): 793-799. |
[11] | 吴锐, 张敏慧, 金成韵, 林健, 王德平. 光热核壳TiN@硼硅酸盐生物玻璃纳米颗粒的降解和矿化性能[J]. 无机材料学报, 2023, 38(6): 708-716. |
[12] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[13] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[14] | 孙晨, 赵昆峰, 易志国. 甲烷完全催化氧化研究进展[J]. 无机材料学报, 2023, 38(11): 1245-1256. |
[15] | 贾玉娜, 曹旭, 焦秀玲, 陈代荣. 无机酸铝体系氧化铝连续纤维的制备技术研究[J]. 无机材料学报, 2023, 38(11): 1257-1264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||