[1] |
BRUCE P G, FREUNBER S A, HARDWICK L J,et al. Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 2012, 11(10): 19-29.
|
[2] |
KANG B, CEDER G.Battery materials for ultra-fast charging and discharging.Nature, 2009, 458(7235): 190-193.
|
[3] |
MIZUSHIMA K, JONES P C P, WISEMAN J B, et al. LixCoO2(0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull., 1980, 15(6): 783-789.
|
[4] |
ARREBOLA J C, CABALLERO A, CRUZ M,et al. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer- assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv. Funct. Mater., 2006, 16(14): 1904-1912.
|
[5] |
GOODENOUGH J B, PARK K S, The Li-ion rechargeable battery: a perspective.J. Am. Chem. Soc., 2013, 135(4): 1167-1176.
|
[6] |
RUHUL A, ILIAS B.Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode.J. Power Sources, 2017, 348: 311-317.
|
[7] |
LIU D, ZHU W, TROTTIER J,et al. Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv., 2014, 4(1): 154-167.
|
[8] |
YOON T, PARK S, MUN J,et al. Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. J. Power Sources, 2012, 215: 312-316.
|
[9] |
MANTHIRAM A, CHEMELEWSKI K, LEE E S.A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries.Energy Environ. Sci., 2014, 7(4): 1339-1350.
|
[10] |
CABANA J, CABANS C M, OMENYA F O,et al. Composition- structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater., 2012, 24(15): 2952-2964.
|
[11] |
SONG J, SHIN D W, LU Y,et al. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x=0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater., 2012, 24(15): 3101-3109.
|
[12] |
MA X H, KANG B, CEDER G.High rate micron-sized ordered LiNi0.5Mn1.5O4. J. Electrochem. Soc., 2010, 157(8): A925-A931.
|
[13] |
ZHENG J M, XIAO J, YU X,et al. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys. Chem. Chem. Phys., 2012, 14(39): 13515-13521.
|
[14] |
WANG Y, CAO G.Developments in nanostructured cathode materials for high-performance lithium-ion batteries.Adv. Mater., 2008, 20(12): 2251-2269.
|
[15] |
XIAO J, CHEN X, SUSHKO P V,et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater., 2012, 24(16): 2109-2116.
|
[16] |
ZHANG X, CHENG F, ZHANG K,et al. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro-nanostructure and high rate capability. RSC Adv., 2012, 2(13): 5669-5675.
|
[17] |
ZHENG J, XIAO J, YU X,et al. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys. Chem. Phys., 2012, 14(39): 13515-13521.
|
[18] |
KIM H, MYUNG S T, YOON C S,et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332 cathodes. Chem. Mater., 2004, 16(5): 906-914.
|
[19] |
JO M R, KIM Y L, KIM Y,et al. Lithium-ion transport through a tailored disordered phase on the LiNi0.5Mn1.5O4 surface for high-power cathode materials. ChemSusChem, 2014, 7: 2248-2254.
|
[20] |
LEE J, DUPRE N, AVDEEV M,et al. Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni. Sci. Rep., 2017, 7: 6728-6739.
|
[21] |
CHANG Z R, CHEN Z J, WU F,et al. Preparation of Li(Ni1/3Co1/3Mn1/3)O2 by spherical Ni1/3Mn1/3Co1/3OOH at a low temperature. J. Power Sources, 2008, 185: 1408-1414.
|
[22] |
IDEMOTO Y, NARAI H, KOURA N. Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J. Power Sources, 2003, 119-121: 125-129.
|
[23] |
BACON G E.Coherent neutron scattering amplitudes.Acta Crystallographica Section A, 1972, 28(4): 357-358.
|
[24] |
ARIYOSHI K, IWAKOSHI Y, NAKAYAMA N,et al. Topotactic two-phase reactions of Li[Ni1/2Mn3/2] O4(P4332) in nonaqueous lithium cells. J. Electrochem. Soc., 2004, 151(2): A296-A303.
|
[25] |
OH S H, CHUNG K Y, JEON S H,et al. Structural and electrochemical investigations on the LiNi0.5-xMn1.5-yMx+yO4(M=Cr, Al, Zr) compound for 5 V cathode material. J. Alloys. Compd., 2009, 469(1/2): 244-250.
|
[26] |
TERADA Y, YASAKA K, NISHIKAWA F,et al. In situ XAFS analysis of Li(Mn, M)2O4(M=Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J. Solid State Chem., 2001, 156(2): 286-291.
|
[27] |
AMMUNDSEN B, ROZIERE J, ISLAM M S A. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganese oxide. J. Phys. Chem. B, 1997, 101(41): 8155-8163.
|