无机材料学报 ›› 2016, Vol. 31 ›› Issue (9): 897-907.DOI: 10.15541/jim20160026 CSTR: 32189.14.10.15541/jim20160026
• • 下一篇
王伟琦, 郑惠锋, 陆冠宏, 刘阳桥, 孙 静, 高 濂
收稿日期:
2016-01-08
修回日期:
2016-04-11
出版日期:
2016-09-20
网络出版日期:
2016-08-29
作者简介:
王伟琦(1989–), 男, 博士研究生. E-mail: weiqiwang@student.sic.ac.cn
基金资助:
WANG Wei-Qi, ZHENG Hui-Feng, LU Guan-Hong, LIU Yang-Qiao, SUN Jing, GAO Lian
Received:
2016-01-08
Revised:
2016-04-11
Published:
2016-09-20
Online:
2016-08-29
About author:
WANG Wei-Qi. E-mail: weiqiwang@student.sic.ac.cn
摘要:
近几年来, 钙钛矿电池发展迅速, 其单电池效率从最初的3.8%迅速提升至目前20.1%, 接近硅基太阳能电池的光电转换效率。TiO2、ZnO、Al2O3等诸多无机纳米金属氧化物材料作为重要的载流子输运材料与钙钛矿生长骨架也被广泛地应用于钙钛矿电池。依据钙钛矿电池功能结构的差异, 本文分别介绍了此类材料作为钙钛矿电池中的致密层及介孔层的制备方法, 并在此基础上介绍了基于表面修饰、掺杂、复合等氧化物的改性手段调节材料理化性能与氧化物/钙钛矿界面特性, 进而改进钙钛矿电池性能的方法。并阐述了进一步提高钙钛矿电池光电转换效率需要关注的重点问题及展望。
中图分类号:
王伟琦, 郑惠锋, 陆冠宏, 刘阳桥, 孙 静, 高 濂. 纳米金属氧化物在钙钛矿电池中的应用研究进展[J]. 无机材料学报, 2016, 31(9): 897-907.
WANG Wei-Qi, ZHENG Hui-Feng, LU Guan-Hong, LIU Yang-Qiao, SUN Jing, GAO Lian. Recent Progress on Applications of Nano Metal Oxides in Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2016, 31(9): 897-907.
Method | Thickness | Pinholes | Flexible | Costs |
---|---|---|---|---|
Wet chemisty | Thick | Many | Suitable | Low |
Spray pyrolysis | Thick | Few | Unsuitable | Low |
ALD | Thin | Few | Suitable | High |
Sputtering | Thin | Few | Suitable | High |
表1 常见TiO2致密层制备方法优缺点
Table 1 Pros and cons of common TiO2 compact layer preparation methods
Method | Thickness | Pinholes | Flexible | Costs |
---|---|---|---|---|
Wet chemisty | Thick | Many | Suitable | Low |
Spray pyrolysis | Thick | Few | Unsuitable | Low |
ALD | Thin | Few | Suitable | High |
Sputtering | Thin | Few | Suitable | High |
图3 在FTO玻璃上制备的TiO2致密层表面扫描电镜照片[31]
Fig. 3 Top-view FE-SEM images of TiO2 compact layers fabricated on FTO substrates by different preparation methods[31](a) ALD; (b) Spray pyrolysis; (c) Spin coating. The average thickness of TiO2 is about 50nm in each sample
图4 生长在(a)ZnO; (b)ZnO/C3-SAM表面的钙钛矿AFM照片; 生长在(c)ZnO; (d)ZnO/C3-SAM表面的钙钛矿SEM照片与(e)生长于ZnO表面(上图)、ZnO/SAM表面(下图)的钙钛矿XRD衍射花样[53]
Fig. 4 AFM images of CH3NH3PbI3 perovskite on (a) bare ZnO and (b) ZnO/C3-SAM. SEM images of CH3NH3PbI3 perovskites on (c) bare ZnO and( d) ZnO/C3-SAM. (e) XRD patterns of perovskite films on ZnO (black line) and ZnO/SAM substrates (red line)[53]
图5 (a)电池扫描电镜断面结构图照片和(b)电池各层能带结构示意图[57]
Fig. 5 (a) SEM cross-sectional image of the device and (b) Energy diagram (relative to the vacuum level) of each functional layer in the device [57]
图6 基于TiO2“纳米碗”电子传输层的钙钛矿电池制备流程示意图[78]
Fig. 6 Schematic fabrication procedure for the TiO2 NB array film based C-PSCs[78](a) PS monolayer; (b) PS monolayer filled with TiO2 sol; (c) TiO2 NB array film; (d) perovskite filled and topped TiO2 NB array; (e) the wrought C-PSC
图7 (左)含介孔TiO2颗粒和(右)含介孔Al2O3颗粒钙钛矿电池载流子传输示意图[17]
Fig. 7 Schematic illustrating the charge transfer and charge transport in a perovskite-sensitized TiO2 solar cell (left) and a noninjecting Al2O3-based solar cell (right) [17]A representation of the energy landscape is shown below, with electrons shown as solid circles and holes as open circles
[1] | KWON S, LIM K G, SHIM M, et al.Air-stable inverted structure of hybrid solar cells using a cesium-doped ZnO electron transport layer prepared by a Sol-Gel process.J. Mater. Chem. A, 2013, 1(38): 11802-11808. |
[2] | ROBERTSON J.Band offsets of wide-band-gap oxides and implications for future electronic devices.J. Vac. Sci. Technol. B, 2000, 18(3): 1785-1791. |
[3] | COTTINEAU T, TOUPIN M, DELAHAYE T, et al.Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors.Appl. Phys. A, 2006, 82(4): 599-606. |
[4] | BARSAN N, KOZIEJ D, WEIMAR U.Metal oxide-based gas sensor research: How to?Sensor Actuact. B-Chem, 2007, 121(1): 18-35. |
[5] | OREGAN B, GRÄTZEL M. A Low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films.Nature, 1991, 353(6346): 737-740. |
[6] | TANG C W.Two-layer organic photovoltaic cell.Appl. Phys. Lett., 1986, 48(2): 183-185. |
[7] | HUYNH W U, DITTMER J J, ALIVISATOS A P.Hybrid nanorod-polymer solar cells.Science, 2002, 295(5564): 2425-2427. |
[8] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc., 2009, 131(17): 6050-6051. |
[9] | IM J H, LEE C R, LEE J W, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[10] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[11] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Lett., 2013, 13(4): 1764-1769. |
[12] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science, 2015, 348(6240): 1234-1237. |
[13] | CHEN W, WU Y, YUE Y, et al.Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.Science, 2015, 350(6263): 944-948. |
[14] | ZHAO Y, ZHU K.Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett., 2014, 5(23): 4175-4186. |
[15] | MALI S S, SHIM C S, HONG C K.Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots.NPG Asia Mater., 2015, 7: e208. |
[16] | KIM H S, LEE C R, IM J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci. Rep., 2012, 2: 591. |
[17] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[18] | ETGAR L, GAO P, XUE Z, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.J. Am. Chem. Soc., 2012, 134(42): 17396-17399. |
[19] | MEI A, LI X, LIU L, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[20] | KUANG C, TANG G, JIU T, et al.Highly efficient electron transport obtained by doping PCBM with Graphdiyne in planar-heterojunction perovskite solar cells.Nano Lett., 2015, 15(4): 2756-2762. |
[21] | BAUMANN A, VAETH S, RIEDER P, et al.Identification of trap states in perovskite solar cells.J. Phys. Chem. Lett., 2015, 6(12): 2350-2354. |
[22] | LI R, XIANG X, TONG X, et al.Wearable double-twisted fibrous perovskite solar cell.Adv. Mater., 2015, 27(25): 3831-3835. |
[23] | ZHANG W, ANAYA M, LOZANO G, et al.Highly efficient perovskite solar cells with tunable structural color.Nano Lett., 2015, 15(3): 1698-1702. |
[24] | QIN P, TETREAULT N, DAR M I, et al.A novel oligomer as a hole transporting material for efficient perovskite solar cells.Adv. Energy Mater., 2015, 5(2): 1400980. |
[25] | SOMMELING P M, O'REGAN B C, HASWELL R R, et al.. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.J. Phys. Chem. B, 2006, 110(39): 19191-19197. |
[26] | DONG W J, JUNG G H, LEE J L.Solution-processed-MoO3 hole extraction layer on oxygen plasma-treated indium tin oxide in organic photovoltaics.Sol. Energy Mater. Sol. Cells, 2013, 116: 94-101. |
[27] | LIU D, YANG J, KELLY T L.Compact layer free perovskite solar cells with 13.5% Efficiency.J. Am. Chem. Soc., 2014, 136(49): 17116-17122. |
[28] | ZHANG Y, LIU M, EPERON G E, et al.Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells.Materials Horizons, 2015, 2(3): 315-322. |
[29] | WOJCIECHOWSKI K, SALIBA M, LEIJTENS T, et al.Sub-150 degrees C processed meso-superstructured perovskite solar cells with enhanced efficiency.Energ. Environ. Sci., 2014, 7(3): 1142-1147. |
[30] | YELLA A, HEINIGER L P, GAO P, et al.Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% Efficiency.Nano Lett., 2014, 14(5): 2591-2596. |
[31] | WU Y, YANG X, CHEN H, et al.Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells.Appl. Phys. Express, 2014, 7(5): 052301. |
[32] | GAO Q, YANG S, LEI L, et al.An effective TiO2 blocking layer for perovskite solar cells with enhanced performance.Chem. Lett., 2015, 44(5): 624-626. |
[33] | BRECKENRIDGE R G, HOSLER W R.Electrical properties of titanium dioxide semiconductors.Phys. Rev., 1953, 91(4): 793-802. |
[34] | FONSTAD C G, REDIKER R H.Electrical properties of high- quality stannic oxide crystals.J. Appl. Phys., 1971, 42(7): 2911-2918. |
[35] | LOOK D C, REYNOLDS D C, SIZELOVE J R, et al.Electrical properties of bulk ZnO.Solid State Commun., 1998, 105(6): 399-401. |
[36] | DONG Q, SHI Y, WANG K, et al.Insight into perovskite solar cells based on SnO2 compact electron-selective layer.J. Phys. Chem. C, 2015, 119(19): 10212-10217. |
[37] | SONG J, ZHENG E, BIAN J, et al.Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells.J. Mater. Chem. A, 2015, 3(20): 10837-10844. |
[38] | SONG J, BIAN J, ZHENG E, et al.Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer.Chem. Lett., 2015, 44(5): 610-612. |
[39] | DONG X, HU H W, LIN B C, et al.The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures.Chem. Commun., 2014, 50(92): 14405-14408. |
[40] | KUMAR M H, YANTARA N, DHARANI S, et al.Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells.Chem. Commun., 2013, 49(94): 11089-11091. |
[41] | MAHMOOD K, SWAIN B S, AMASSIAN A, Double-layered ZnO nanostructures for efficient perovskite solar cells.Nanoscale, 2014, 6(24): 14674-14678. |
[42] | WANG K, SHI Y, DONG Q, et al.Low-temperature and solution-processed amorphous WOx as electron-selective layer for perovskite solar cells.J. Phys. Chem. Lett, 2015, 6(5): 755-759. |
[43] | JEON N J, NOH J H, YANG W S, et al.Compositional engineering of perovskite materials for high-performance solar cells.Nature, 2015, 517(7535): 476-480. |
[44] | SNAITH H J, ABATE A, BALL J M, et al.Anomalous hysteresis in perovskite solar cells.J. Phys. Chem. Lett., 2014, 5(9): 1511-1515. |
[45] | PARK J H, SEO J, PARK S, et al.Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-Type NiO electrode formed by a pulsed laser deposition.Adv. Mater., 2015, 27(27): 4013-4019. |
[46] | ZHU Z, BAI Y, ZHANG T, et al.High-performance hole- extraction layer of Sol-Gel-processed NiO nanocrystals for inverted planar perovskite solar cells.Angew. Chem.-Int. Edit., 2014, 53(46): 12571-12575. |
[47] | GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells.Nature Photon., 2014, 8(7): 506-514. |
[48] | HU L, PENG J, WANG W, et al.Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells.ACS Photon., 2014, 1(7): 547-553. |
[49] | WANG K C, SHEN P S, LI M H, et al.Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells.ACS Appl. Mater. Inter., 2014, 6(15): 11851-11858. |
[50] | ZUO C T, DING L M.Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells.Small, 2015, 11(41): 5528-5532. |
[51] | WANG J T W, BALL J M, BAREA E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.Nano Lett., 2014, 14(2): 724-730. |
[52] | KIM J H, LIANG P W, WILLIAMS S T, et al.High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole- transporting layer.Adv. Mater., 2015, 27(4): 695-701. |
[53] | ZUO L, GU Z, YE T, et al.Enhanced photovoltaic performance of CH3NH3Pbl3 perovskite solar cells through interfacial engineering using self-assembling monolayer.J. Am. Chem. Soc., 2015, 137(7): 2674-2679. |
[54] | BAI Y, CHEN H, XIAO S, et al.Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance.Adv. Funct. Mater., 2016, doi: 10.1002/adfm.201505215. |
[55] | RYU S, NOH J H, JEON N J, et al.Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor.Energ. Environ. Sci., 2014, 7(8): 2614-2618. |
[56] | YANG D, YANG R, ZHANG J, et al.High efficiency flexible perovskite solar cells using superior low temperature TiO2.Energ. Environ. Sci., 2015, 8(11): 3208-3214. |
[57] | ZHOU H, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells.Science, 2014, 345(6196): 542-546 |
[58] | DONG H P, LI Y, WANG S F, et al.Interface engineering of perovskite solar cells with PEO for improved performance.J. Mater. Chem. A, 2015, 3(18): 9999-10004. |
[59] | XING G C, WU B, CHEN S, et al.Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction.Small, 2015, 11(29): 3606-3613. |
[60] | JENA A K, CHEN H W, KOGO A, et al.The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells.ACS Appl. Mater. Inter., 2015, 7(18): 9817-9823. |
[61] | WOJCIECHOWSKI K, STRANKS S D, ABATE A, et al.Heterojunction modification for highly efficient organic-inorganic perovskite solar cells.ACS Nano, 2014, 8(12): 12701-12709. |
[62] | WANG J, QIN M, TAO H, et al.Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer.Appl. Phys. Lett., 2015, 106(12): 121104. |
[63] | YUAN Z, WU Z, BAI S, et al.Hot-electron injection in a sandwiched TiOx-Au-TiOx structure for high-performance planar perovskite solar cells.Adv. Energ. Mater., 2015, 5(10): 1500038. |
[64] | XING G, MATHEWS N, SUN S, et al.Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[65] | NOEL N K, STRANKS S D, ABATE A, et al.Lead-free organic-inorganic tin halide perovskites for photovoltaic applications.Energ. Environ. Sci., 2014, 7(9): 3061-3068. |
[66] | MAHMOOD K, SWAIN B S, KIRMANI A R, et al.Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material.J. Mater. Chem. A, 2015, 3(17): 9051-9057. |
[67] | ZHU Z, ZHENG X, BAI Y, et al.Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Phys.Chen. Chem. Phys. 2015, 17(28): 18265-18268. |
[68] | WANG C, TANG Y, HU Y, et al.Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells.RSC Adv., 2015, 5(64): 52041-52047. |
[69] | SON D Y, IM J H, KIM H S, et al.11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system.J. Phys. Chem. C, 2014, 118(30): 16567-16573. |
[70] | KOGO A, SANEHIRA Y, IKEGAMI M, et al.Brookite TiO2 as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells.J. Mater. Chem. A, 2015, 3(42): 20952-20957. |
[71] | WANG H, ABU SAYEED M, WANG T.Perovskite solar cells based on nanocrystalline SnO2 material with extremely small particle sizes.Aust. J. Chem. 2015, 68(11): 1783-1788. |
[72] | CAI B, ZHONG D, YANG Z, et al.An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells.J. Mater. Chem. C, 2015, 3(4): 729-733. |
[73] | SON D Y, BAE K H, KIM H S, et al.Effects of seed layer on growth of ZnO nanorod and performance of perovskite solar cell.J. Phys. Chem. C, 2015, 119(19): 10321-10328. |
[74] | HAN G S, CHUNG H S, KIM D H, et al.Epitaxial 1D electron transport layers for high-performance perovskite solar cells.Nanoscale, 2015, 7(37): 15284-15290. |
[75] | JENNINGS J R, GHICOV A, PETER L M, et al.Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.J. Am. Chem. Soc., 2008, 130(40): 13364-13372. |
[76] | TATHAVADEKAR M C, AGARKAR S A, GAME O S, et al.Enhancing efficiency of perovskite solar cell via surface microstructuring: Superior grain growth and light harvesting effect.Solar Energy, 2015, 112: 12-19. |
[77] | FAKHARUDDIN A, DI GIACOMO F, AHMED I, et al.Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells.J. Power Sources, 2015, 283: 61-67. |
[78] | ZHENG X, WEI Z, CHEN H, et al.Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells.Nanoscale, 2016, 8(12): 6393-6402. |
[79] | CHEN H, WEI Z, YAN K, et al.Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage.Faraday Discuss., 2014, 176: 271-286. |
[80] | MAHMOOD K, SWAIN B S, AMASSIAN A.Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials.Adv. Mater., 2015, 27(18): 2859-2865. |
[81] | MALI S S, SHIM C S, PARK H K, et al.Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells.Chem. Mater., 2015, 27(5): 1541-1551. |
[82] | KIM D H, HAN G S, SEONG W M, et al.Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells.Chemsuschem, 2015, 8(14): 2392-2398. |
[83] | ITO S, TANAKA S, MANABE K, et al.Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells.J. Phys. Chem. C, 2014, 118(30): 16995-17000. |
[84] | GUO X, DONG H, LI W, et al.Multifunctional MgO layer in perovskite solar cells.Chemphyschem, 2015, 16(8): 1727-1732. |
[85] | LISTORTI A, JUAREZ-PEREZ E J, FRONTERA C, et al.. Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells.J. Phys. Chem. Lett., 2015, 6(9): 1628-1637. |
[86] | GUARNERA S, ABATE A, ZHANG W, et al.Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer.J. Phys. Chem. Lett., 2015, 6(3): 432-437. |
[87] | CHEN W, WU Y, LIU J, et al.Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells.Energ. Environ. Sci., 2015, 8(2): 629-640. |
[88] | DYMSHITS A, ROTEM A, ETGAR L.High voltage in hole conductor free organo metal halide perovskite solar cells.J. Mater. Chem. A, 2014, 2(48): 20776-20781. |
[89] | LIU T, LIU L, HU M, et al.Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell.J. Power Sources, 2015, 293: 533-538. |
[90] | LIU Z, ZHANG M, XU X, et al.p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells.Dalton T., 2015, 44(9): 3967-3973. |
[91] | CAO K, ZUO Z, CUI J, et al.Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture.Nano Energy, 2015, 17: 171-179. |
[92] | CAO K, CUI J, ZHANG H, et al.Efficient mesoscopic perovskite solar cells based on the CH3NH3PbI2Br light absorber.J. Mater. Chem. A, 2015, 3(17): 9116-9122. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||