无机材料学报 ›› 2015, Vol. 30 ›› Issue (12): 1327-1333.DOI: 10.15541/jim20150200 CSTR: 32189.14.10.15541/jim20150200
邵冲云1, 2, 许文彬2, 3, 刘力挽1, 2, 杨秋红1, 胡丽丽2, 周秦岭2, 王世凯2
收稿日期:
2015-04-24
修回日期:
2015-06-16
出版日期:
2015-12-20
网络出版日期:
2015-11-24
作者简介:
邵冲云(1990–), 男, 硕士研究生. E-mail: shaochongyun@foxmail.com
基金资助:
SHAO Chong-Yun1, 2, XU Wen-Bin2, 3, LIU Li-Wan1, 2, YANG Qiu-Hong1, HU Li-Li2, ZHOU Qin-Ling2, WANG Shi-Kai2
Received:
2015-04-24
Revised:
2015-06-16
Published:
2015-12-20
Online:
2015-11-24
About author:
SHAO Chong-Yun. E-mail: shaochongyun@foxmail.com
Supported by:
摘要:
采用溶胶-凝胶法结合高温真空烧结工艺制备了不同浓度的Al3+/Yb3+/P5+掺杂石英玻璃。研究了P5+和Al3+的引入对Yb3+掺杂石英玻璃紫外透过和紫外激发荧光光谱, 以及Yb4d电子结合能的影响, 并初步探索了其机理。研究结果表明, Al3+/Yb3+/P5+掺杂石英玻璃在190~300 nm波段的吸收主要来源于O2-→Yb3+的电荷迁移吸收, 其谱带位置和Yb4d电子结合能随Yb3+的第二配位元素(Al、Si、P)电负性增大向高能方向移动。真空烧结条件下, 引入Al3+会引发石英玻璃中Yb3+还原为Yb2+, 其典型的吸收峰位于330 nm处; 然而, 在Al3+/Yb3+共掺的基础上再引入P5+, 且P5+/Al3+摩尔比大于1时, 可以有效抑制Yb2+的形成。紫外光激发引起的近红外发光(976 nm)是电子从电荷迁移态弛豫到Yb3+激发态向基态跃迁的结果, 可见发光(525 nm)归因于Yb2+的5d→4f跃迁。本文研究结果对通过优化工艺和调整组分制备出高性能的Yb3+掺杂光纤具有一定的指导意义。
中图分类号:
邵冲云, 许文彬, 刘力挽, 杨秋红, 胡丽丽, 周秦岭, 王世凯. Al3+/Yb3+/P5+掺杂对石英玻璃紫外透过和紫外激发荧光的影响[J]. 无机材料学报, 2015, 30(12): 1327-1333.
SHAO Chong-Yun, XU Wen-Bin, LIU Li-Wan, YANG Qiu-Hong, HU Li-Li, ZHOU Qin-Ling, WANG Shi-Kai. Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses[J]. Journal of Inorganic Materials, 2015, 30(12): 1327-1333.
Sample | Yb2O3 | Al2O3 | P2O5 | K2O | BaO | SiO2 | Al/Yb | Yb2O3(wt-ppm) | |
---|---|---|---|---|---|---|---|---|---|
0#pure silica | — | — | — | — | — | 100 | — | — | |
Al# | 1#Al-1 | — | 1.0 | — | — | — | 99.00 | — | — |
2#Al-4.5 | — | 4.5 | — | — | — | 95.50 | — | — | |
3#AY-0.5-0.05 | 0.05 | 0.5 | — | — | — | 99.45 | 10 | 3259 | |
4#AY-2.5-0.05 | 0.05 | 2.5 | — | — | — | 97.45 | 50 | 3214 | |
Yb# | 5#Yb-0.05 | 0.05 | — | — | — | — | 99.95 | 0 | 3270 |
6#Yb-0.08 | 0.08 | — | — | — | — | 99.92 | 0 | 5324 | |
7#YA-0.05-1 | 0.05 | 1.0 | — | — | — | 98.95 | 20 | 3248 | |
8#YA-0.1-1 | 0.10 | 1.0 | — | — | — | 98.90 | 10 | 6478 | |
9#YA-0.15-1 | 0.15 | 1.0 | — | — | — | 98.85 | 20/3 | 9690 | |
10#MCVD | 0.02 | 0.2 | — | — | — | 99.78 | 10 | 1308 | |
P# | 11#PAY-6-4-0 | — | 4.0 | 6 | — | — | 90.00 | — | — |
12#PAY-1-4-0.1 | 0.10 | 4.0 | 1 | — | — | 94.90 | 40 | 6264 | |
13#PAY-6-4-0.1 | 0.10 | 4.0 | 6 | — | — | 89.90 | 40 | 5881 | |
14#P-65 | 1 | 5.0 | 65 | 5 | 24 | — | 5 | 27594 |
表1 Al3+/Yb3+/P5+掺杂石英玻璃和参照样品玻璃组分/mol%
Table1 Compositions of Yb3+/Al3+/P5+-doped silica glasses and reference samples/mol%
Sample | Yb2O3 | Al2O3 | P2O5 | K2O | BaO | SiO2 | Al/Yb | Yb2O3(wt-ppm) | |
---|---|---|---|---|---|---|---|---|---|
0#pure silica | — | — | — | — | — | 100 | — | — | |
Al# | 1#Al-1 | — | 1.0 | — | — | — | 99.00 | — | — |
2#Al-4.5 | — | 4.5 | — | — | — | 95.50 | — | — | |
3#AY-0.5-0.05 | 0.05 | 0.5 | — | — | — | 99.45 | 10 | 3259 | |
4#AY-2.5-0.05 | 0.05 | 2.5 | — | — | — | 97.45 | 50 | 3214 | |
Yb# | 5#Yb-0.05 | 0.05 | — | — | — | — | 99.95 | 0 | 3270 |
6#Yb-0.08 | 0.08 | — | — | — | — | 99.92 | 0 | 5324 | |
7#YA-0.05-1 | 0.05 | 1.0 | — | — | — | 98.95 | 20 | 3248 | |
8#YA-0.1-1 | 0.10 | 1.0 | — | — | — | 98.90 | 10 | 6478 | |
9#YA-0.15-1 | 0.15 | 1.0 | — | — | — | 98.85 | 20/3 | 9690 | |
10#MCVD | 0.02 | 0.2 | — | — | — | 99.78 | 10 | 1308 | |
P# | 11#PAY-6-4-0 | — | 4.0 | 6 | — | — | 90.00 | — | — |
12#PAY-1-4-0.1 | 0.10 | 4.0 | 1 | — | — | 94.90 | 40 | 6264 | |
13#PAY-6-4-0.1 | 0.10 | 4.0 | 6 | — | — | 89.90 | 40 | 5881 | |
14#P-65 | 1 | 5.0 | 65 | 5 | 24 | — | 5 | 27594 |
图1 Al3+/Yb3+/P5+掺杂对石英玻璃紫外吸收光谱的影响
Fig. 1 Influence of Al3+/Yb3+/P5+-doping on UV absorption spectra of silica glasses. (a) Al3+and Yb3+single doping; (b) Al3+/Yb3+-co-doping with Al3+ ion contents variation; (c) Al3+/Yb3+-co-doping with Yb3+ ion contents variation; (d) Al3+/Yb3+/P5+-co-doping with P5+ ion contents variation
图2 不同样品的(a)紫外吸收光谱和(b)紫外激发可见发光光谱
Fig. 2 (a) UV absorption spectra and (b) visible emission spectra under UV excitation of different samples. Al3+/Yb3+-co-doped silica glasses with Al3+ and Yb3+ion contents variation are represented by thick solid line(4#、5#、6#) and dashed line(9#、8#、7#), respectively. Al3+/Yb3+/P5+-co-doped silica glasses with P5+ ion contents variation are represented by thin solid line(12#、13#). The inset in (b) shows an enlargement of the emission intensities of sample
图3 不同样品的Yb4d电子的XPS谱
Fig. 3 XPS spectra of Yb4d in different samples. (a) Pure Yb2O3 powder, (b) 8#, (c) 6#, (d) 13#, and (e) 14# samples, Pure Yb2O3 powder and Yb3+ doped phosphate glass(14#) are used as reference samples
图4 不同样品的(a)紫外吸收和(b)紫外激发荧光光谱
Fig. 4 (a)UV absorption spectra and (b) fluorescence spectra under UV excitation of different samples. Sample 6# is Yb3+ single doping, sample 8# is Yb3+/Al3+-co-doping, sample 13# is Yb3+/Al3+/P5+-co-doping with excess P5+ contents. Coordination environment of Yb3+ of those three samples can appear Yb-O-Si, Yb-O-Al, and Yb-O-P, respectively. Sample 10# is a reference sample which is prepared in oxygen atmosphere by MCVD-system to ensure that the Yb ions are in their trivalent state
Sample | Yb-O-M(M=) | EN* | Yb4d BE* /eV | CT band /eV |
---|---|---|---|---|
8# | Al Si | 1.61 1.90 | 186.7 | 5.23 5.80 |
6# | Si | 1.90 | 187.1 | 5.80 |
13# | P | 2.19 | 187.6 | 6.50 |
表2 样品8#、6#和13#的结构和光谱对比
Table 2 Comparison of structure and spectra for samples of 8#, 6# and 13#
Sample | Yb-O-M(M=) | EN* | Yb4d BE* /eV | CT band /eV |
---|---|---|---|---|
8# | Al Si | 1.61 1.90 | 186.7 | 5.23 5.80 |
6# | Si | 1.90 | 187.1 | 5.80 |
13# | P | 2.19 | 187.6 | 6.50 |
图5 在(a)Yb3+/Al3+共掺、(b)Yb3+单掺和(c)Yb3+/P5+共掺石英玻璃中Yb3+离子CT跃迁位形坐标示意图
Fig. 5 Schematic configurational coordinate diagrams for the CT-transitions in (a) Yb3+/Al3+-co-doped, (b) Yb3+ singly doped and (c)Yb3+/P3+-co-doped silica glasses
[1] | LEICH M, JUST F, LANGNER A, et al.Highly efficient Yb-doped silica fibers prepared by powder sinter technology.Optics Letters, 2011, 36(9): 1557-1559. |
[2] | WANG S, LOU F, WANG M, et al.Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by Sol-Gel method.Fibers, 2013, 1(3): 93-100. |
[3] | JEONG Y, SAHU J, PAYNE D, et al.Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power.Opt Express, 2004, 12(25): 6088-6092. |
[4] | DESCHAMPS T, OLLIER N, VEZIN H, et al.Clusters dissolution of Yb3+ in co-doped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening.The Journal of Chemical Physics, 2012, 136(1): 14503. |
[5] | COSCELLI E, POLI F, ALKESKJOLD T T, et al. Single-mode design guidelines for 19-Cell double-cladding photonic crystal fibers.Journal of Lightwave Technology, 2012, 30(12): 1909-1914. |
[6] | WANG S, LI Z, YU C, et al.Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by Sol-Gel method.Optical Materials, 2013, 35(9): 1752-1755. |
[7] | UNGER S, SCHWUCHOW A, JETSCHKE S, et al. Optical Properties of Yb-doped Laser Fibers in Dependence on Codopants and Preparation Conditions. International Society for Optics and Photonics, San Jose, CA, 2008: 689016-1-11. |
[8] | ENGHOLM M, NORIN L.Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass.Opt. Express, 2008, 16(2): 1260-1268. |
[9] | KOPONEN J J, HOFFMAN H J, TAMMELA S K.Measuring photodarkening from single-mode ytterbium doped silica fibers.Optics Express, 2006, 14(24): 11539-11544. |
[10] | YOO S, BASU C, BOYLAND A J, et al.Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation.Optics Letters, 2007, 32(12): 1626-1628. |
[11] | ENGHOLM M, NORIN L, ABERG D.Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation.Optics Letters, 2007, 32(22): 3352-3354. |
[12] | MATTSSON K E.Photo darkening of rare earth doped silica. Opt. Express, 2011, 19(21): 19797-19812. |
[13] | RYBALTOVSKY A A, BOBKOV K K, VELMISKIN V V, et al.The Yb-doped Aluminosilicate Fibers Photodarkening Mechanism Based on the Charge-transfer State Excitation. Fiber Laser XI: Technology, Systems, and Applications, 2014, 8961: 896116. |
[14] | KIRCHHOF J, UNGER S, SCHWUCHOWA, et al. Materials for high-power fiber lasers.Journal of Non-Crystalline Solids, 2006, 352(23/24/25): 2399-2403. |
[15] | LOU FENG-GUANG, WANG SHI-KAI, WANG-MENG, et al.Sol-Gel derived Al3+, Yb3+ co-doped silica fiber core.Journal of Inorganic Materials, 2014, 29(4): 393-398. |
[16] | SIGEL G H.Vacuum ultraviolet absorption in alkali doped fused silica and silicate glasses.Journal of Physics and Chemistry of Solids, 1971, 32(10): 2373-2383. |
[17] | KIRCHHOF J, UNGER S, SCHWUCHOW A, et al.The Influence of Yb2+ Ions on Optical Properties and Power Stability of Ytterbium Doped Laser Fibers. Optical Components and Materials VII.2010, 7598: 75980B. |
[18] | WANG S, LOU F, YU C, et al.Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+and P5+ ions on Yb3+ ions in silica glass.Journal of Materials Chemistry C, 2014, 2(22): 4406. |
[19] | SHEN Y L, SHENG Q C, LIU S, et al.Effect of aluminum co-doping on the formation of Yb2+ in ytterbium-doped high silica glass.Chinese Optics Letters, 2013, 11(5): 1601. |
[20] | BOULON G.Why so deep research on Yb3+-doped optical inorganic materials?Journal of Alloys and Compounds, 2008, 451(1): 1-11. |
[21] | NAKAZ E.The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO4 hosts.Journal of Luminescence, 2002, 100(1): 89-96. |
[22] | BLASSE G.On the Eu3+fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides.The Journal of Chemical Physics, 1966, 45(7): 2356-2360. |
[23] | DUFFY J A.The electronic polarisability of oxygen in glass and the effect of composition.Journal of Non-Crystalline Solids, 2002, 297(2): 275-284. |
[24] | VAN PIETERSON L, HEEROMA M, De HEER E, et al.Charge transfer luminescence of Yb3+.Journal of Luminescence, 2000, 91(3): 177-193. |
[1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[2] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[3] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[4] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[5] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[6] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[7] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[8] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[11] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[12] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[13] | 崔宁, 张玉新, 王鲁杰, 李彤阳, 于源, 汤华国, 乔竹辉. (TiVNbMoW)Cx高熵陶瓷的单相形成过程与碳空位调控[J]. 无机材料学报, 2025, 40(5): 511-520. |
[14] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
[15] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||