| [1] | ZHOU W, YAMAMOTO K, MIURA A, et al.  Seebeck-driven transverse thermoelectric generation. Nature Materals, 2021,  20(4):463. | 
																													
																						| [2] | FREIRE L O, NAVARRETE L M, CORRALES B P, et al.  Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 2021, 7: 355. | 
																													
																						| [3] | ZHANG K, ZHENG Q, WANG L, et al. Preparation and characterization of Ag2Se-based ink used for inkjet printing. Journal of Inorganic Materials, 2022,  37(10):1109. DOI
 | 
																													
																						| [4] | MIN J I N, RONGBING L I, CHENGUANG F U, et al. Research progress on crystal growth and the thermoelectric properties of Zintl phase Mg3X2(X= Sb, Bi) based materials. Journal of Inorganic Materials, 2023,  38(3):270. DOI    
																																					URL
 | 
																													
																						| [5] | SHI X, BAI S, XI L, et al.  Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 2011,  26(15):1745. DOI    
																																					URL
 | 
																													
																						| [6] | BAI H, SU X, YANG D, et al.  An instant change of elastic lattice strain during Cu2Se phase transition: origin of abnormal thermoelectric properties. Advanced Functional Materials, 2021,  31(20):2100431. DOI    
																																					URL
 | 
																													
																						| [7] | ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015,  1(2):92. DOI    
																																					URL
 | 
																													
																						| [8] | HOANG K, MAHANTI S D. Atomic and electronic structures of I-V-VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 2016,  1(1):51. DOI    
																																					URL
 | 
																													
																						| [9] | DU B, ZHANG R, CHEN K, et al.  The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. Journal of Materials Chemistry A, 2017,  5(7):3249. DOI    
																																					URL
 | 
																													
																						| [10] | WANG H, LI J F, ZOU M, et al.  Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Applied Physics Letters, 2008,  93(20):202106. DOI    
																																					URL
 | 
																													
																						| [11] | ROYCHOWDHURY K, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science, 2021, 371: 722. | 
																													
																						| [12] | GUIN S N, CHATTERJEE A, BISWAS K. Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Advances, 2014,  4(23):11811. DOI    
																																					URL
 | 
																													
																						| [13] | CAI S, LIU Z, SUN J, et al.  Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. Dalton Transactions, 2015,  44(3):1046. DOI    
																																					URL
 | 
																													
																						| [14] | BOCHER F, CULVER S P, PEILSTOCKER J, et al.  Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics. Dalton Transactions, 2017,  46(12):3906. DOI    
																																					URL
 | 
																													
																						| [15] | FAN S J, JIANG M, GU S J, et al.  In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties. Journal of Advanced Ceramics, 2022,  11(12): 1932. DOI
 | 
																													
																						| [16] | FU Y T, ZHANG Q, HU Z L, et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy & Environmental Science, 2022,  15(8):3265. | 
																													
																						| [17] | PAN L, BERARDAN D, DRAGOE N. High thermoelectric properties of n-type AgBiSe2. Journal of The American Chemical Society, 2013,  135(13):4914. DOI    
																																																	PMID
 | 
																													
																						| [18] | LIU X, JIN D, LIANG X. Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping. Applied Physics Letters, 2016,  109(13):133901. DOI    
																																					URL
 | 
																													
																						| [19] | WU H J, WEI P C, CHENG H Y, et al.  Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials. Acta Materialia, 2017, 141: 217. | 
																													
																						| [20] | GUIN S N, SRIHARI V, BISWAS K. Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping. Journal of Materials Chemistry A, 2015,  3(2):648. DOI    
																																					URL
 | 
																													
																						| [21] | ZHAO T, ZHU H, ZHANG B, et al.  High thermoelectric performance of tellurium-free n-type AgBi1-xSb Se2 with stable cubic structure enabled by entropy engineering. Acta Materialia, 2021, 220: 117291. | 
																													
																						| [22] | LIU X C, PAN M Y. Structural phase transition and related thermoelectric properties in Sn doped AgBiSe2. Crystals, 2021,  11(9):1016. DOI    
																																					URL
 | 
																													
																						| [23] | WANG T, CHENG C, LIU Y, et al. Inhibition of lattice thermal conductivity of ZrNiSn-based half-Heusler thermoelectric materials by entropy adjustment. Journal of Inorganic Materials, 2022,  37(7):717. DOI
 | 
																													
																						| [24] | ZHU H, ZHAO T, ZHANG B, et al.  Entropy engineered cubic n-type AgBiSe2 alloy with high thermoelectric performance in fully extended operating temperature range. Advanced Energy Materials, 2020,  11(5):2003304. DOI    
																																					URL
 | 
																													
																						| [25] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32: 751. | 
																													
																						| [26] | MARIANO A N, CHOPRA K L. Polymorphism in some IV-VI compounds induced by high pressure and thin-film epitaxial growth. Applied Physics Letters, 1967,  10(10):282. DOI    
																																					URL
 | 
																													
																						| [27] | ZHANG Q, GUO Z, TAN X, et al.  Effects of AgBiSe2 on thermoelectric properties of SnTe. Chemical Engineering Journal, 2020, 390: 124585. | 
																													
																						| [28] | TANG X, SU X, TAO Q, et al. Effect of Te and In co-doping on thermoelectric properties of Cu2SnSe3 compounds. Journal of Inorganic Materials, 2022,  37(10):1079. DOI    
																																					URL
 | 
																													
																						| [29] | XIA Q, YING P, HAN Z, et al.  Chemical composition engineering leading to the significant improvement in the thermoelectric performance of AgBiSe2-based n-type solid solutions. ACS Applied Energy Materials, 2021,  4(3):2899. DOI    
																																					URL
 | 
																													
																						| [30] | HU Y, YUAN S, HUO H, et al.  Stabilized cubic phase BiAgSe2-xSx with excellent thermoelectric properties via phase boundary engineering. Journal of Materials Chemistry C, 2021,  9(21):6766. DOI    
																																					URL
 | 
																													
																						| [31] | WU H, LU X, WANG G, et al. Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy, 2020, 76: 10508. |