无机材料学报 ›› 2023, Vol. 38 ›› Issue (2): 113-124.DOI: 10.15541/jim20220400 CSTR: 32189.14.10.15541/jim20220400
• 综述 • 下一篇
刘岩1(), 张珂颖1,2, 李天宇1,2, 周菠1,2, 刘学建1, 黄政仁1
收稿日期:
2022-07-09
修回日期:
2022-09-20
出版日期:
2023-02-20
网络出版日期:
2022-09-22
作者简介:
刘岩(1975-), 男, 博士, 研究员. E-mail: stony2000@mail.sic.ac.cn
基金资助:
LIU Yan1(), ZHANG Keying1,2, LI Tianyu1,2, ZHOU Bo1,2, LIU Xuejian1, HUANG Zhengren1
Received:
2022-07-09
Revised:
2022-09-20
Published:
2023-02-20
Online:
2022-09-22
About author:
LIU Yan (1975-), male, PhD, professor. E-mail: stony2000@mail.sic.ac.cn
Supported by:
摘要:
陶瓷材料因具有良好的机械性能、抗腐蚀性、耐高温性及抗氧化性等, 被广泛应用于航空航天、医疗、能源交通等领域, 陶瓷材料自身及其与金属材料的连接技术对于实际工程应用具有重要意义。由于部分陶瓷材料与电场的特殊作用机理, 将外加电场应用于陶瓷材料的连接技术中, 可以获得多种普通连接技术所不具备的优势, 如连接温度较低和连接时间较短等, 这就催生了新型陶瓷材料电场辅助连接技术。本文着重梳理了陶瓷及陶瓷基复合材料电场辅助连接技术的研究现状, 对近年来电场辅助连接技术的研究进展进行了综述, 重点介绍了电场辅助扩散连接(Electric field-assisted diffusion bonding, FDB) 技术、放电等离子体烧结 (Spark plasma sintering, SPS)连接技术以及新型低温快速闪连接(Flash joining, FJ) 技术的连接机理、典型界面微观结构、接头强度及影响因素等, 阐述了不同电场辅助连接技术的适用范围和局限性, 并对陶瓷材料电场辅助连接技术的发展进行了展望。
中图分类号:
刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124.
LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend[J]. Journal of Inorganic Materials, 2023, 38(2): 113-124.
Joining method | Electric field type | Electric field | Joining current | Joining temperature | Joining time |
---|---|---|---|---|---|
FDB | DC | Small | Small | Low | Long |
SPS | DC pulse | Small | Large | High | Short |
FJ | DC/DC pulse | Large | Small | Low | Fast |
表1 三种电场辅助连接技术的比较
Table 1 Comparison of three electric-field assisted joining technologies
Joining method | Electric field type | Electric field | Joining current | Joining temperature | Joining time |
---|---|---|---|---|---|
FDB | DC | Small | Small | Low | Long |
SPS | DC pulse | Small | Large | High | Short |
FJ | DC/DC pulse | Large | Small | Low | Fast |
Joining system | Joining condition | Shear strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|
Al/β-Al2O3 | 500-600 ℃, 500 V, 1-2 h | — | No interlayer | [ |
Cu/ZrO2 | 800 ℃ 50 V, 1 A, 20 min | — | Cu2O, Cu-Zr | [ |
Ni/ZrO2 | 1100 ℃, 10 mA, 30 min | 160±15 | Ni-Zr | [ |
Polycrystal ferrites/single crystalline ferrites | 1200 ℃, 1 A, 24 h | — | No interlayer | [ |
表2 离子导电陶瓷的FDB
Table 2 FDB of ionic conductive ceramics
Joining system | Joining condition | Shear strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|
Al/β-Al2O3 | 500-600 ℃, 500 V, 1-2 h | — | No interlayer | [ |
Cu/ZrO2 | 800 ℃ 50 V, 1 A, 20 min | — | Cu2O, Cu-Zr | [ |
Ni/ZrO2 | 1100 ℃, 10 mA, 30 min | 160±15 | Ni-Zr | [ |
Polycrystal ferrites/single crystalline ferrites | 1200 ℃, 1 A, 24 h | — | No interlayer | [ |
图3 在不同连接条件下锰锌铁氧体多晶和单晶界面的SEM照片[25]
Fig. 3 Interfacial SEM micrographs of manganese-zinc ferrite poly- and single-crystals under different bonding conditions[25] (a) 1000 ℃, 1 h, not etched; (b) 1200 ℃, 1 h, not etched; (c) 1200 ℃, 12 h, not etched; (d) 1000 ℃, 1 h, etched; (e) 1200 ℃, 1 h, etched; (f) 1200 ℃, 12 h, etched. Current for all cases is 1 A
图4 在不同电流强度和极性下连接后Ni/ZrO2界面的横截面微观结构[33]
Fig. 4 Cross-sectional microstructures at the Ni/ZrO2 interfaces after joining under different current intensities and polarities[33] (a) +30 mA; (b) +60 mA; (c) −60 mA. The elemental mapping graphs correspond to the magnified frame area in image (c)
图5 Al2O3/Ti接头的TEM照片[34]
Fig. 5 TEM micrographs of the Al2O3/Ti joint bonded at 900 ℃ for 1 h under 700 V DC field [34] (a-c) Morphologies of the reaction layer (a), magnified zone B (b) and magnified zone C (c); (d) Electron diffraction (SAED) patterns of the phases
Joining system | Joining conditions | Joint strength characterization | Maximum average joint strength/MPa | Ref. |
---|---|---|---|---|
SiC/SiC | 1900 ℃, 5 min, 3.5 MPa | Bending strength | 260.24±12.00 | [ |
LR-SiC/LR-SiC | 1750 ℃, ~500 ℃/min, 800 A, 10 min, 50 MPa | — | — | [ |
HR-SiC/HR-SiC | 2100 ℃, 100 ℃/min, 2400 A, 10 min, 50 MPa | — | — | [ |
CVD-SiC/CVD-SiC | 1900 ℃, 50 ℃/min, 5 min, 60 MPa | Bending strength | 436±1 | [ |
Coated C/SiC/C/SiC | 1700 ℃, 150-200 ℃/min, 3 min, 60 MPa | Shear strength | 24.6 | [ |
Ti3SiC2/Ti3AlC2 | 1200 ℃, 150 ℃/min, ~1.18 kA, <6 min, 15 MPa | Shear strength | ~50 | [ |
Ti3SiC2/Ti3SiC2 | 1300 ℃, 150 ℃/min, ~1.30 kA, <6 min, 15 MPa | Shear strength | ~50 | [ |
Ti3AlC2/Ti3AlC2 | 1300 ℃, 150 ℃/min, ~1.32 kA, <6 min, 15 MPa | Shear strength | ~60 | [ |
SiCw/Ti3SiC2/SiCw/Ti3SiC2 | 1090 ℃, 100 ℃/min, 586 A·cm-2, 30 s, 30 MPa | Shear strength | 51.8±2.9 | [ |
STO bicrystal/STO bicrystal | 1200 ℃, 70-80 ℃/min, ~550 A, 15 min, 140 MPa | — | — | [ |
TaC/HfC | 1850 ℃, 10 min, 60 MPa | — | — | [ |
α-SiAlON/α-SiAlON | 1650 ℃, 10 min, 20 MPa | Bending strength | ~610 | [ |
表3 无中间层陶瓷材料的SPS连接
Table 3 SPS joining of ceramic material without interlayer
Joining system | Joining conditions | Joint strength characterization | Maximum average joint strength/MPa | Ref. |
---|---|---|---|---|
SiC/SiC | 1900 ℃, 5 min, 3.5 MPa | Bending strength | 260.24±12.00 | [ |
LR-SiC/LR-SiC | 1750 ℃, ~500 ℃/min, 800 A, 10 min, 50 MPa | — | — | [ |
HR-SiC/HR-SiC | 2100 ℃, 100 ℃/min, 2400 A, 10 min, 50 MPa | — | — | [ |
CVD-SiC/CVD-SiC | 1900 ℃, 50 ℃/min, 5 min, 60 MPa | Bending strength | 436±1 | [ |
Coated C/SiC/C/SiC | 1700 ℃, 150-200 ℃/min, 3 min, 60 MPa | Shear strength | 24.6 | [ |
Ti3SiC2/Ti3AlC2 | 1200 ℃, 150 ℃/min, ~1.18 kA, <6 min, 15 MPa | Shear strength | ~50 | [ |
Ti3SiC2/Ti3SiC2 | 1300 ℃, 150 ℃/min, ~1.30 kA, <6 min, 15 MPa | Shear strength | ~50 | [ |
Ti3AlC2/Ti3AlC2 | 1300 ℃, 150 ℃/min, ~1.32 kA, <6 min, 15 MPa | Shear strength | ~60 | [ |
SiCw/Ti3SiC2/SiCw/Ti3SiC2 | 1090 ℃, 100 ℃/min, 586 A·cm-2, 30 s, 30 MPa | Shear strength | 51.8±2.9 | [ |
STO bicrystal/STO bicrystal | 1200 ℃, 70-80 ℃/min, ~550 A, 15 min, 140 MPa | — | — | [ |
TaC/HfC | 1850 ℃, 10 min, 60 MPa | — | — | [ |
α-SiAlON/α-SiAlON | 1650 ℃, 10 min, 20 MPa | Bending strength | ~610 | [ |
图7 TaC/HfC接头的显微结构图[44]
Fig. 7 Fractured micrographs of the TaC-HfC joint [44] (a) Low magnification fractured image; (b-d) High-resolution fractured images of the interface eliciting the presence of slip lines on (b) TaC side, (c) TaC-HfC interface, and (d) HfC side
Joining system | Interlayer | Joining conditions | Joint strength characterization | Maximum joint strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|---|---|
SiC/SiC | 4.5YSZ | 1700 ℃, 150 ℃/min, 40 MPa | Bending strength | 26.7 | ZrO2 | [ |
SiC/SiC | 4.5YSZ+ 20% Al2O3 (in mass) | 1800 ℃, 100-200 ℃/min, 40 MPa | Bending strength | 107.3 | ZrO2, mZrO2 | [ |
SiC/SiC | TSC | 1900 ℃, 5 min, 3.5 MPa | Bending strength | 230.6±19 | TiC, Ti, Al | [ |
SiC/SiC | TAC | 1900 ℃, 5 min, 3.5 MPa | Bending strength | 230.5±13 | TiC, Al, Ti | [ |
SiC/SiC | TSC | 1300 ℃, 100-200 ℃/min, 15 min, 50 MPa | Bending strength | 80.4 | TiCx, TixSiy | [ |
SiC/SiC | TSC | 1400 ℃, 100-200 ℃/min, 30 MPa | Bending strength | 66 | TiSi2, TiC | [ |
SiC/SiC | TSC | 1600 ℃, 30 min, 20-40 MPa | Bending strength | 110.4 | TSC, TiC | [ |
CVD-SiC/ CVD-SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Bending strength | 220.3±3.2 | TSC | [ |
Coated SiCf/SiC/ coated SiCf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 18.3±5.8 | TSC | [ |
Coated Cf/SiC/ coated Cf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 31.1±4.0 | TSC | [ |
Uncoated T300 1K Cf/SiC/uncoated T300 1K Cf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 19.1±2.0 | TSC, SiC | [ |
Uncoated M40J 3K Cf/SiC/uncoated M40J 3K Cf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 5.5±1.8 | TSC, SiC | [ |
Coated C/SiC/ coated C/SiC | CA | 1480 ℃, 50 ℃/min, 10 min, 0 MPa | Shear strength | ~14.1 | CA | [ |
Coated C/SiC/ coated C/SiC | SiC+B4C | 1900 ℃, 150-200 ℃/min, 3 min, 60 MPa | Shear strength | 18.2 | — | [ |
Cf/SiC/Cf/SiC | TSC | 1600 ℃, 30 min, 20-40 MPa | Bending strength | 62.6 | TSC, TiC | [ |
表4 使用无机材料中间层SPS连接陶瓷材料
Table 4 SPS joining of ceramic material with inorganic material interlayer
Joining system | Interlayer | Joining conditions | Joint strength characterization | Maximum joint strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|---|---|
SiC/SiC | 4.5YSZ | 1700 ℃, 150 ℃/min, 40 MPa | Bending strength | 26.7 | ZrO2 | [ |
SiC/SiC | 4.5YSZ+ 20% Al2O3 (in mass) | 1800 ℃, 100-200 ℃/min, 40 MPa | Bending strength | 107.3 | ZrO2, mZrO2 | [ |
SiC/SiC | TSC | 1900 ℃, 5 min, 3.5 MPa | Bending strength | 230.6±19 | TiC, Ti, Al | [ |
SiC/SiC | TAC | 1900 ℃, 5 min, 3.5 MPa | Bending strength | 230.5±13 | TiC, Al, Ti | [ |
SiC/SiC | TSC | 1300 ℃, 100-200 ℃/min, 15 min, 50 MPa | Bending strength | 80.4 | TiCx, TixSiy | [ |
SiC/SiC | TSC | 1400 ℃, 100-200 ℃/min, 30 MPa | Bending strength | 66 | TiSi2, TiC | [ |
SiC/SiC | TSC | 1600 ℃, 30 min, 20-40 MPa | Bending strength | 110.4 | TSC, TiC | [ |
CVD-SiC/ CVD-SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Bending strength | 220.3±3.2 | TSC | [ |
Coated SiCf/SiC/ coated SiCf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 18.3±5.8 | TSC | [ |
Coated Cf/SiC/ coated Cf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 31.1±4.0 | TSC | [ |
Uncoated T300 1K Cf/SiC/uncoated T300 1K Cf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 19.1±2.0 | TSC, SiC | [ |
Uncoated M40J 3K Cf/SiC/uncoated M40J 3K Cf/SiC | TSC | 1300 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 5.5±1.8 | TSC, SiC | [ |
Coated C/SiC/ coated C/SiC | CA | 1480 ℃, 50 ℃/min, 10 min, 0 MPa | Shear strength | ~14.1 | CA | [ |
Coated C/SiC/ coated C/SiC | SiC+B4C | 1900 ℃, 150-200 ℃/min, 3 min, 60 MPa | Shear strength | 18.2 | — | [ |
Cf/SiC/Cf/SiC | TSC | 1600 ℃, 30 min, 20-40 MPa | Bending strength | 62.6 | TSC, TiC | [ |
图8 CVD-SiC/TSC/CVD-SiC接头背散射SEM照片[46]
Fig. 8 Backscattered SEM images of the polished cross section of the CVD β-SiC joined with the pre-sintered Ti3SiC2 foil using SPS[46]
Joining system | Interlayer | Joining conditions | Joint strength characterization | Maximum joint strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|---|---|
SiC/SiC | Y | 1900 ℃, 100 ℃/min, 10 min, 50 MPa | Bending strength | 134.8±2.1 | ZrO2 | [ |
SiC/SiC | Ti | 1000 ℃, 100 ℃/min, 5 min, 30 MPa | Bending strength | 205.7±24 | ZrO2, mZrO2 | [ |
SiC/SiC | 3Ti/1.2Si/ 2C/0.2Al | 1600 ℃, 100-200 ℃/min, 30 MPa | Bending strength | 133 | TiC, Ti, Al | [ |
SiC coated C/SiC/ SiC coated C/SiC | Ti/Nb/Ti | 1200 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 61±6 | TiC, Al, Ti | [ |
CVD-SiC/CVD-SiC | Ti | 1700 ℃, 50 ℃/min, 5 min, 60 MPa | Bending strength | 126±16 | TiCx, TixSiy | [ |
Coated C/SiC/ coated C/SiC | Ti | 1700 ℃, 150-200 ℃/min, 3 min, 60 MPa | Shear strength | 17.3±7.8 | TiSi2, TiC | [ |
表5 使用金属中间层SPS连接陶瓷材料
Table 5 SPS joining of ceramic material with metal interlayer
Joining system | Interlayer | Joining conditions | Joint strength characterization | Maximum joint strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|---|---|
SiC/SiC | Y | 1900 ℃, 100 ℃/min, 10 min, 50 MPa | Bending strength | 134.8±2.1 | ZrO2 | [ |
SiC/SiC | Ti | 1000 ℃, 100 ℃/min, 5 min, 30 MPa | Bending strength | 205.7±24 | ZrO2, mZrO2 | [ |
SiC/SiC | 3Ti/1.2Si/ 2C/0.2Al | 1600 ℃, 100-200 ℃/min, 30 MPa | Bending strength | 133 | TiC, Ti, Al | [ |
SiC coated C/SiC/ SiC coated C/SiC | Ti/Nb/Ti | 1200 ℃, 100 ℃/min, 5 min, 50 MPa | Shear strength | 61±6 | TiC, Al, Ti | [ |
CVD-SiC/CVD-SiC | Ti | 1700 ℃, 50 ℃/min, 5 min, 60 MPa | Bending strength | 126±16 | TiCx, TixSiy | [ |
Coated C/SiC/ coated C/SiC | Ti | 1700 ℃, 150-200 ℃/min, 3 min, 60 MPa | Shear strength | 17.3±7.8 | TiSi2, TiC | [ |
图10 闪连接示意图与性能[24]
Fig. 10 Schematic diagram and performance of flash joining[24] (a) Schematic of the joining apparatus; (b) Changes of the current, voltage and power dissipation with time
图11 3YSZ/Ag-CuO/430SS的界面微观结构演变示意图[69]
Fig. 11 Schematic diagrams of interfacial microstructure evolution of 3YSZ/Ag-CuO/430SS assembly[69] (a) Furnace heating stage; (b) Joule heating, electrochemical reduction of 3YSZ and formation of AgCu4Zr and Zr-rich IMCs
Joining system | Joining conditions | Joint strength characterization | Maximum average joint strength/MPa | Ref. |
---|---|---|---|---|
3YSZ/3YSZ | 900 ℃, 30 V/cm, 100 mA/mm2, 6 MPa, 1 s | Bending strength | 595 | [ |
CVD-SiC/Ti/Cf/SiC | 1250 ℃, 2.2 kW, 370 A, 16 MPa, 7 s | Shear strength | 31.4 | [ |
3YSZ/3YSZ | 800 ℃, 50 V/cm, 100 mA/mm2, 6 MPa, 18 s | Bending strength | 606±18 | [ |
MgO-doped Al2O3/MgO-doped Al2O3 | 1300 ℃, 1500 V/cm, 0.1 A, 4 MPa, 30 s | Shear strength | 146 | [ |
BSCF/BSCF | 1000 ℃, 10 V/cm, 0.45 A/mm2, 10 s | — | — | [ |
ZrO2/ZA/Al2O3 | 1200 ℃, 1800 V/cm, 0.3 A, 4 MPa, 30 s | Shear strength | 3YSZ/ZA: ~65 ZA/Al2O3: ~30 | [ |
表6 陶瓷-陶瓷间的闪连接
Table 6 Flash joining between ceramics
Joining system | Joining conditions | Joint strength characterization | Maximum average joint strength/MPa | Ref. |
---|---|---|---|---|
3YSZ/3YSZ | 900 ℃, 30 V/cm, 100 mA/mm2, 6 MPa, 1 s | Bending strength | 595 | [ |
CVD-SiC/Ti/Cf/SiC | 1250 ℃, 2.2 kW, 370 A, 16 MPa, 7 s | Shear strength | 31.4 | [ |
3YSZ/3YSZ | 800 ℃, 50 V/cm, 100 mA/mm2, 6 MPa, 18 s | Bending strength | 606±18 | [ |
MgO-doped Al2O3/MgO-doped Al2O3 | 1300 ℃, 1500 V/cm, 0.1 A, 4 MPa, 30 s | Shear strength | 146 | [ |
BSCF/BSCF | 1000 ℃, 10 V/cm, 0.45 A/mm2, 10 s | — | — | [ |
ZrO2/ZA/Al2O3 | 1200 ℃, 1800 V/cm, 0.3 A, 4 MPa, 30 s | Shear strength | 3YSZ/ZA: ~65 ZA/Al2O3: ~30 | [ |
Joining system | Joining conditions | Joint strength characterization | Maximum joint strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|---|
ZrO2/Ti-alloy | 700 ℃, 100 V/cm, 70 mA/mm2, 30 s,10 MPa | Shear strength | 67±9 | Ti, Zr | [ |
ZrO2/Ni-alloy | 800 ℃, 100 V/cm, 100 mA/mm2, 1 s, 5 MPa | Shear strength | 133 | Ni, Zr | [ |
3YSZ/Ag-CuO/430SS | 950 ℃, 80 V/cm, 40 mA/mm2, 30 s, 0.7 MPa | Shear strength | 158±9 | AgCu4Zr | [ |
3YSZ/Cu/304SS | 1200 ℃, 50 V/cm, 100 mA/mm2, 30 s, 6 MPa | Shear strength | 21±4 | Cu-Zr | [ |
3YSZ/Cu/GH3128 | 1000 ℃, 30 mA/mm2, 30 s, 0.1 MPa | Shear strength | 250±15 | Cu-Zr | [ |
表7 陶瓷-金属间的闪连接
Table 7 Flash joining between ceramics and metals
Joining system | Joining conditions | Joint strength characterization | Maximum joint strength/MPa | Main phases at interface | Ref. |
---|---|---|---|---|---|
ZrO2/Ti-alloy | 700 ℃, 100 V/cm, 70 mA/mm2, 30 s,10 MPa | Shear strength | 67±9 | Ti, Zr | [ |
ZrO2/Ni-alloy | 800 ℃, 100 V/cm, 100 mA/mm2, 1 s, 5 MPa | Shear strength | 133 | Ni, Zr | [ |
3YSZ/Ag-CuO/430SS | 950 ℃, 80 V/cm, 40 mA/mm2, 30 s, 0.7 MPa | Shear strength | 158±9 | AgCu4Zr | [ |
3YSZ/Cu/304SS | 1200 ℃, 50 V/cm, 100 mA/mm2, 30 s, 6 MPa | Shear strength | 21±4 | Cu-Zr | [ |
3YSZ/Cu/GH3128 | 1000 ℃, 30 mA/mm2, 30 s, 0.1 MPa | Shear strength | 250±15 | Cu-Zr | [ |
图13 不同工艺参数下3YSZ/Ti-alloy的接头强度变化[74]
Fig. 13 Shear strength of the 3YSZ/Ti-alloy joint under different conditions[74] (a) 700 ℃ and 30 s at different current densities; (b) 700 ℃ at current density of 70 mA/mm2 for different time; (c) Current density of 70 mA/mm2 for 30 s at different temperatures
[1] | LI Z R, GU W, FENG J C. Research status of ceramic and metal joining. Welding, 2008(3): 55. |
[2] | SHI K Q, LI M, ZHU D D, et al. Research progress of brazing between ceramic and metal. Thermal processing, 2021, 50(13): 7. |
[3] | JIAO R B, RONG S F, LI H B, et al. Current situation and prospect of advanced ceramics and metal connections. Foshan Ceramics, 2018, 28(3): 6. |
[4] | CONG S S. State-of-the-art bonding methods for ceramics and metals. Bonding, 1983(3): 21. |
[5] | FU W, SONG X G, ZHAO Y X, et al. Indirect brazing of Al2O3 ceramics and copper. Journal of Welding, 2015, 36(6): 27. |
[6] | LIU H J, LI Z R, FENG J C, et al. Vacuum brazing of SiC ceramics and TiAl alloys. Welding, 1999(3): 7. |
[7] |
WANG Q, CHEN G Q, WANG K, et al. Microstructural evolution and growth kinetics of interfacial compounds in TiAl/Ti3SiC2 diffusion bonding joints. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2019, 756: 149.
DOI URL |
[8] |
ZHANG C G, QIAO G J, JIN Z H. Active brazing of pure alumina to Kovar alloy based on the partial transient liquid phase (PTLP) technique with Ni-Ti interlayer. Journal of the European Ceramic Society, 2002, 22(13): 2181.
DOI URL |
[9] |
LI S J, ZHOU Y, DUAN H P, et al. Joining of SiC ceramic to Ni-based superalloy with functionally gradient material fillers and a tungsten intermediate layer. Journal of Materials Science, 2003, 38(19): 4065.
DOI URL |
[10] |
ESSA A A, BAHRANI A S. The friction joining of ceramics to metals. Journal of Materials Processing Technology, 1991, 26(2): 133.
DOI URL |
[11] |
DOEHLER F, ZSCHECKEL T, KASCH S, et al. A glass in the CaO/MgO/Al2O3/SiO2 system for the rapid laser sealing of alumina. Ceramics International, 2017, 43(5): 4302.
DOI URL |
[12] |
RABIN B H. Joining of silicon carbide/silicon carbide composites and dense silicon carbide using combustion reactions in the titanium-carbon-nickel system. Journal of the American Ceramic Society, 1992, 75(1): 131.
DOI URL |
[13] |
FERNIE J A, DREW R A L, KNOWLES K M. Joining of engineering ceramics. International Materials Reviews, 2009, 54(5): 283.
DOI URL |
[14] | JING W, ZHANG H. Influence of packaging technology on performance of power semiconductor modules. Power Electronics Technology, 2018, 52(8): 1. |
[15] | LIU F J, DU Z L, CHEN S P, et al. Effect of electric field on the structure and mechanical properties of AZ31B/Al diffusion bonding interface. Weapon Materials Science and Engineering, 2009, 32(5): 18. |
[16] |
WALLIS G, POMERANTZ D I. Field assisted glass-metal sealing. Journal of Applied Physics, 1969, 40(10): 3946.
DOI URL |
[17] |
BYEON S C, HONG K S. Electric field assisted bonding of ceramics. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2000, 287(2): 159.
DOI URL |
[18] |
MUNIR Z A, ANSELMI-TAMBURINI U, OHYANAGI M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science, 2006, 41(3): 763.
DOI URL |
[19] |
DONG H, LI S, TENG Y, et al. Joining of SiC ceramic-based materials with ternary carbide Ti3SiC2. Materials Science and Engineering: B, 2011, 176(1): 60.
DOI URL |
[20] |
FITRIANI P, SEPTIADI A, HYUK J D, et al. Joining of SiC monoliths using a thin MAX phase tape and the elimination of joining layer by solid-state diffusion. Journal of the European Ceramic Society, 2018, 38(10): 3433.
DOI URL |
[21] |
TATARKO P, CASALEGNO V, HU C, et al. Joining of CVD-SiC coated and uncoated fibre reinforced ceramic matrix composites with pre-sintered Ti3SiC2 MAX phase using Spark Plasma Sintering. Journal of the European Ceramic Society, 2016, 36(16): 3957.
DOI URL |
[22] |
GRASSO S, TATARKO P, RIZZO S, et al. Joining of β-SiC by spark plasma sintering. Journal of the European Ceramic Society, 2014, 34(7): 1681.
DOI URL |
[23] |
ZHOU X, HAN Y H, SHEN X, et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology. Journal of Nuclear Materials, 2015, 466: 322
DOI URL |
[24] |
XIA J, REN K, WANG Y. One-second flash joining of zirconia ceramic by an electric field at low temperatures. Scripta Materialia, 2019, 165: 34.
DOI URL |
[25] |
KNOWLES K M, VAN HELVOORT A T J. Anodic bonding. International Materials Reviews, 2006, 51(5): 273.
DOI URL |
[26] | PAN R. Study on technology and mechanism of electric-assisted diffusion bonding of alumina ceramic to Ti. Harbin: Master Thesis of Harbin Institute of Technology, 2013. |
[27] |
DUNN B. Field-assisted bonding of beta-alumina to metals. Journal of the American Ceramic Society, 1979, 62(11/12): 545.
DOI URL |
[28] |
BYEON S C, BYUN T Y, HONG K S. Bonding between single- crystal manganese-zinc ferrites using electric field. Journal of Materials Research, 1998, 13(11): 3191.
DOI URL |
[29] |
BYEON S C, JE H J, HONG K S. Direct current-induced bonding between single- and polycrystalline manganese-zinc ferrites. IEEE Transactions on Magnetics, 2000, 36(1): 371.
DOI URL |
[30] |
LU F H, DIECKMANN R. Point defects and cation tracer diffusion in (Co, Fe, Mn)3-δO4 spinels: I. Mixed spinels (CoxFe2yMny)3-δO4. Solid State Ionics, 1992, 53-56: 290.
DOI URL |
[31] |
LU F H, DIECKMANN R. Point defects and cation tracer diffusion in (Co, Fe, Mn)3-δO4 spinels: II. Mixed spinels (CoxFezMn2z)3-δO4. Solid State Ionics, 1993, 59(1): 71.
DOI URL |
[32] | ARATA Y, OHMORI A, SANO A. Interfacial phenomena during field assisted bonding of zirconia to metals. Transactions of JWRI, 1986, 15(2): 387. |
[33] |
YANG B, SHEN P, YU L T, et al. Electrochemically-driven direct joining of Ni and ZrO2. Scripta Materialia, 2017, 141: 41.
DOI URL |
[34] |
PAN R, WANG Q, SUN D, et al. Effects of electric field on interfacial microstructure and shear strength of diffusion bonded α-Al2O3/Ti joints. Journal of the European Ceramic Society, 2015, 35(1): 219.
DOI URL |
[35] |
DONG P, WANG Z, WANG W, et al. Understanding the spark plasma sintering from the view of materials joining. Scripta Materialia, 2016, 123: 118.
DOI URL |
[36] |
MAMEDOV V. Spark plasma sintering as advanced PM sintering method. Powder Metallurgy, 2002, 45(4): 322.
DOI URL |
[37] |
SHEN Z, JOHNSSON M, ZHAO Z, et al. Spark plasma sintering of alumina. Journal of the American Ceramic Society, 2002, 85(8): 1921.
DOI URL |
[38] |
GUILLON O, GONZALEZ-JULIAN J, DARGATZ B, et al. Field-assisted sintering technology/Spark plasma sintering: mechanisms, materials, and technology developments. Advanced Engineering Materials, 2014, 16(7): 830.
DOI URL |
[39] |
LI H, KOYANAGI T, ANG C, et al. Electric current-assisted direct joining of silicon carbide. Journal of the European Ceramic Society, 2021, 41(5): 3072.
DOI URL |
[40] |
RIZZO S, GRASSO S, SALVO M, et al. Joining of C/SiC composites by spark plasma sintering technique. Journal of the European Ceramic Society, 2014, 34(4): 903.
DOI URL |
[41] |
SHEN L, XUE J M, BARSOUM M W, et al. Rapid bonding of Ti3SiC2 and Ti3AlC2 by pulsed electrical current heating. Journal of the American Ceramic Society, 2014, 97(12): 3721.
DOI URL |
[42] |
ZHOU X, SHI L-K, ZOU S, et al. Fast seamless joining of SiCw/Ti3SiC2 composite using electric field-assisted sintering technique. International Journal of Applied Ceramic Technology, 2021, 18(5): 1670.
DOI URL |
[43] | HUGHES L A, VAN BENTHEM K. Spark plasma sintering apparatus used for the formation of strontium titanate bicrystals. Journal of Visualized Experiments, 2017, 120: 1. |
[44] |
NISAR A, DOLMETSCH T, PAUL T, et al. Electric field assisted solid-state interfacial joining of TaC-HfC ceramics without filler. Journal of the American Ceramic Society, 2021, 104(6): 2483.
DOI URL |
[45] |
LIU L, YE F, ZHOU Y, et al. Fast bonding α-SiAlON ceramics by spark plasma sintering. Journal of the European Ceramic Society, 2010, 30(12): 2683.
DOI URL |
[46] |
TATARKO P, CHLUP Z, MAHAJAN A, et al. High temperature properties of the monolithic CVD beta-SiC materials joined with a pre-sintered MAX phase Ti3SiC2 interlayer via solid-state diffusion bonding. Journal of the European Ceramic Society, 2017, 37(4): 1205.
DOI URL |
[47] |
YU Y, DONG H, MA B, et al. Effect of different filler materials on the microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Journal of Alloys and Compounds, 2017, 708: 373.
DOI URL |
[48] |
DONG H, YU Y, JIN X, et al. Microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Ceramics International, 2016, 42(13): 14463.
DOI URL |
[49] |
ZHAO X, DUAN L, WANG Y. Fast interdiffusion and Kirkendall effects of SiC-coated C/SiC composites joined by a Ti-Nb-Ti interlayer via spark plasma sintering. Journal of the European Ceramic Society, 2019, 39(5): 1757.
DOI URL |
[50] |
ZHOU X, LIU J, ZOU S, et al. Almost seamless joining of SiC using an in-situ reaction transition phase of Y3Si2C2. Journal of the European Ceramic Society, 2020, 40(2): 259.
DOI URL |
[51] |
YANG H, ZHOU X, SHI W, et al. Thickness-dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer. Journal of the European Ceramic Society, 2017, 37(4): 1233.
DOI URL |
[52] | AKDOGAN E K, SAVKLIYILDIZ I, BICER H, et al. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: a time-resolved in situ energy dispersive X-ray diffractometry study with an ultrahigh energy synchrotron probe. Journal of Applied Physics, 2013, 113(23): 3503. |
[53] |
GRIMLEY C A, PRETTE A L G, DICKEY E C. Effect of boundary conditions on reduction during early stage flash sintering of YSZ. Acta Materialia, 2019, 174: 271.
DOI URL |
[54] |
TODD R I, ZAPATA-SOLVAS E, BONILLA R S, et al. Electrical characteristics of flash sintering: thermal runaway of Joule heating. Journal of the European Ceramic Society, 2015, 35(6): 1865.
DOI URL |
[55] |
ZHANG Y Y, NIE J Y, LUO J. Flash sintering activated by bulk phase and grain boundary complexion transformations. Acta Materialia, 2019, 181: 544.
DOI URL |
[56] |
NAIK K S, SGLAVO V M, RAJ R. Flash sintering as a nucleation phenomenon and a model thereof. Journal of the European Ceramic Society, 2014, 34(15): 4063.
DOI URL |
[57] |
RAJ R, COLOGNA M, FRANCIS J S C. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. Journal of the American Ceramic Society, 2011, 94(7): 1941.
DOI URL |
[58] |
CHAIM R. Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials, 2016, 9(4): 280.
DOI URL |
[59] |
CHAIM R, AMOUYAL Y. Liquid-film assisted mechanism of reactive flash sintering in oxide systems. Materials, 2019, 12(9): 1494.
DOI URL |
[60] |
DONG Y H, CHEN I W. Predicting the onset of flash sintering. Journal of the American Ceramic Society, 2015, 98(8): 2333.
DOI URL |
[61] |
YU M, GRASSO S, MCKINNON R, et al. Review of flash sintering: materials, mechanisms and modelling. Advances in Applied Ceramics, 2017, 116(1): 24.
DOI URL |
[62] |
JI W, PARKER B, FALCO S, et al. Ultra-fast firing: effect of heating rate on sintering of 3YSZ, with and without an electric field. Journal of the European Ceramic Society, 2017, 37(6): 2547.
DOI URL |
[63] |
ZHANG Y Y, JUNG J I, LUO J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Materialia, 2015, 94: 87.
DOI URL |
[64] |
MISHRA T P, AVILA V, NETO R R I, et al. On the role of debye temperature in the onset of flash in three oxides. Scripta Materialia, 2019, 170: 81.
DOI |
[65] |
TATARKO P, GRASSO S, SAUNDERS T G, et al. Flash joining of CVD-SiC coated Cf/SiC composites with a Ti interlayer. Journal of the European Ceramic Society, 2017, 37(13): 3841.
DOI URL |
[66] |
XIA J B, REN K, WANG Y G. One-second flash joining of zirconia ceramic by an electric field at low temperatures. Scripta Materialia, 2019, 165: 34.
DOI URL |
[67] |
FRANCIS J S C, RAJ R. Flash-sinter-forging of nanograin zirconia: field assisted sintering and super-plasticity. Journal of the American Ceramic Society, 2012, 95(1): 138.
DOI URL |
[68] |
FRANCIS J S C, RAJ R. Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. Journal of the American Ceramic Society, 2013, 96(9): 2754.
DOI URL |
[69] |
CAO Y, XU G C, SHEN P. Flash joining of 3YSZ and 430 SS using Ag-CuO filler. Ceramics International, 2022, 48(3): 4005.
DOI URL |
[70] |
XIA J B, REN K, LIU W, et al. Ultrafast joining of zirconia ceramics using electric field at low temperatures. Journal of the European Ceramic Society, 2019, 39(10): 3173.
DOI URL |
[71] |
XIA J, REN K, WANG Y. Flash joining of alumina ceramics under a small current density. Journal of the European Ceramic Society, 2021, 41(4): 2782.
DOI URL |
[72] | SHI D. Research on the process and mechanism of BSCF ceramics’ flash sintering and flash joining. Harbin: Master Thesis of Harbin Institute of Technology, 2020. |
[73] |
XIA J, REN K, WANG Y. Rapid joining of heterogeneous ceramics with a composite interlayer under the action of an electric field. Journal of the European Ceramic Society, 2021, 41(14): 7164.
DOI URL |
[74] |
XIA J B, REN K, WANG Y G. Reversible joining of zirconia to titanium alloy. Ceramics International, 2019, 45(2): 2509.
DOI |
[75] |
XIA J B, REN K, WANG Y G, et al. Reversible flash-bonding of zirconia and nickel alloys. Scripta Materialia, 2018, 153: 31.
DOI URL |
[76] | CAO Y, XU G C, LI L, et al. Flash sintering of 3YSZ and in-situ joining with 304 stainless steel using copper as an interlayer. Scripta Materialia, 2021, 194: 5. |
[77] |
LI L, LIANG Y Z, CHEN S M, et al. Ultrafast and robust joining of 3YSZ and GH3128 superalloy using Cu interlayer under an electric field. Journal of Alloys and Compounds, 2022, 890: 161893.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 谭敏, 陈小武, 杨金山, 张翔宇, 阚艳梅, 周海军, 薛玉冬, 董绍明. 流延成型结合反应熔渗制备ZrB2-SiC陶瓷及其微观结构与氧化行为研究[J]. 无机材料学报, 2024, 39(8): 955-964. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[7] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[8] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[9] | 武向权, 滕家琛, 季祥旭, 郝禹博, 张忠明, 徐春杰. 织构化多孔Al2O3-SiO2复合陶瓷片-球混合浆料特性及光强分布仿真[J]. 无机材料学报, 2024, 39(7): 769-778. |
[10] | 王康龙, 殷杰, 陈晓, 王力, 刘学建, 黄政仁. 颗粒级配对选区激光烧结打印结合常压固相烧结制备碳化硅陶瓷性能的影响[J]. 无机材料学报, 2024, 39(7): 754-760. |
[11] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[12] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[13] | 刘焱, 覃显鹏, 甘霖, 周国红, 章天金, 王士维, 陈鹤拓. 亚微米球形Y2O3粉体及其透明陶瓷的制备[J]. 无机材料学报, 2024, 39(6): 691-696. |
[14] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[15] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||