无机材料学报 ›› 2020, Vol. 35 ›› Issue (3): 301-308.DOI: 10.15541/jim20190350 CSTR: 32189.14.10.15541/jim20190350
所属专题: 2020年环境材料论文精选(二)重金属元素去除
收稿日期:
2019-07-15
修回日期:
2019-09-25
出版日期:
2020-03-20
网络出版日期:
2019-10-23
作者简介:
王 海(1981–), 男, 副教授. E-mail: wanghai@usx.edu.cn
WANG Hai,YANG Ningcan,QIU Muqing()
Received:
2019-07-15
Revised:
2019-09-25
Published:
2020-03-20
Online:
2019-10-23
About author:
WANG Hai(1981–), male, associate professor. E-mail: wanghai@usx.edu.cn
Supported by:
摘要:
重金属铬的污染会严重威胁到土壤和水体的环境安全, 而水中的六价铬化合物则具有很强的迁移性、富集性和氧化性等特性, 更具有危害性且难以处理。吸附法是一种能简单、高效地处理含重金属污水的处理技术。在磁力搅拌条件下采用花生壳生物炭分别与高岭土和膨润土混合制备而成两种生物炭-黏土材料, 并分别对这两种生物炭-黏土的表面特性进行表征。结果发现所选用的两种黏土均能不规则地负载在生物炭的表面。吸附实验结果显示, 生物炭-高岭土(Biochar@Kaolin)吸附铬(VI)的能力显著高于生物炭-膨润土(Biochar@Bentonite)。从吸附动力学方程的分析可以看出, 合成的两种生物炭负载黏土吸附水中的铬(VI)均符合伪二级动力学方程。从吸附等温线分析中可以得到, Biochar@Bentonite吸附铬(VI)的过程符合Langmuir模型, 而Biochar@Kaolin吸附铬(VI)的过程符合Freundlich模型。研究结果显示, 采用生物炭-黏土的复合材料修复环境中的重金属污染具有广阔的应用前景。
中图分类号:
王海, 阳柠灿, 邱木清. 花生壳生物炭-黏土吸附水中的Cr(VI)[J]. 无机材料学报, 2020, 35(3): 301-308.
WANG Hai, YANG Ningcan, QIU Muqing. Adsorption of Cr(VI) from Aqueous Solution by Biochar-clay Derived from Clay and Peanut Shell[J]. Journal of Inorganic Materials, 2020, 35(3): 301-308.
Sample | BET specific surface area/(m2·g-1) | Average pore width/nm |
---|---|---|
Biochar | 2.79 | 39.37 |
Biochar@Kaolin | 6.15 | 83.41 |
Biochar@Bentonite | 3.08 | 56.18 |
Table 1 Characterizations of Biochar, Biochar@Kaolin and Biochar@Bentonite
Sample | BET specific surface area/(m2·g-1) | Average pore width/nm |
---|---|---|
Biochar | 2.79 | 39.37 |
Biochar@Kaolin | 6.15 | 83.41 |
Biochar@Bentonite | 3.08 | 56.18 |
Sample | Pseudo-first-order | Pseudo-second-order | ||||
---|---|---|---|---|---|---|
qe/(mg·g-1) | k1/min-1 | R2 | qe/(mg·g-1) | K2/(g·mg-1·min-1) | R2 | |
Biochar | 6.54 | 0.056 | 0.967 | 7.80 | 0.063 | 0.990 |
Biochar@Kaolin | 7.07 | 0.092 | 0.947 | 8.91 | 0.122 | 0.986 |
Biochar@Bentonite | 7.70 | 0.048 | 0.971 | 9.41 | 0.052 | 0.991 |
Table 2 Pseudo-first order kinetic and pseudo-second order kinetic parameters of Cr(VI) ions removal by Biochar, Biochar@Kaolin and Biochar@Bentonite
Sample | Pseudo-first-order | Pseudo-second-order | ||||
---|---|---|---|---|---|---|
qe/(mg·g-1) | k1/min-1 | R2 | qe/(mg·g-1) | K2/(g·mg-1·min-1) | R2 | |
Biochar | 6.54 | 0.056 | 0.967 | 7.80 | 0.063 | 0.990 |
Biochar@Kaolin | 7.07 | 0.092 | 0.947 | 8.91 | 0.122 | 0.986 |
Biochar@Bentonite | 7.70 | 0.048 | 0.971 | 9.41 | 0.052 | 0.991 |
T/℃ | Sample | Langmuir adsorption model | Freundlich adsorption model | ||||
---|---|---|---|---|---|---|---|
Qmax/(mg·g-1) | KL/(L·mg-1) | R2 | KF/((mg·g)-1/n) | 1/n | R2 | ||
20 | Biochar@Kaolin | 15.58 | 0.0029 | 0.978 | 3.57 | 0.0064 | 0.995 |
Biochar@Bentonite | 20.54 | 0.035 | 0.980 | 6.75 | 0.0042 | 0.903 | |
30 | Biochar@Kaolin | 68.98 | 0.0063 | 0.940 | 4.55 | 0.0083 | 0.992 |
Biochar@Bentonite | 23.64 | 0.058 | 0.967 | 10.53 | 0.0033 | 0.942 | |
40 | Biochar@Kaolin | 76.62 | 0.13 | 0.795 | 9.61 | 0.0028 | 0.996 |
Biochar@Bentonite | 27.23 | 0.28 | 0.956 | 14.82 | 0.0016 | 0.852 |
Table 3 Parameters of adsorption isotherms for Cr(VI) ions removal by Biochar, Biochar@Kaolin and Biochar@Bentonite at 20, 30 and 40 ℃, respectively
T/℃ | Sample | Langmuir adsorption model | Freundlich adsorption model | ||||
---|---|---|---|---|---|---|---|
Qmax/(mg·g-1) | KL/(L·mg-1) | R2 | KF/((mg·g)-1/n) | 1/n | R2 | ||
20 | Biochar@Kaolin | 15.58 | 0.0029 | 0.978 | 3.57 | 0.0064 | 0.995 |
Biochar@Bentonite | 20.54 | 0.035 | 0.980 | 6.75 | 0.0042 | 0.903 | |
30 | Biochar@Kaolin | 68.98 | 0.0063 | 0.940 | 4.55 | 0.0083 | 0.992 |
Biochar@Bentonite | 23.64 | 0.058 | 0.967 | 10.53 | 0.0033 | 0.942 | |
40 | Biochar@Kaolin | 76.62 | 0.13 | 0.795 | 9.61 | 0.0028 | 0.996 |
Biochar@Bentonite | 27.23 | 0.28 | 0.956 | 14.82 | 0.0016 | 0.852 |
[1] | ALEKSANDRA B, PATRYK O, RYSZARD D . Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Biores. Technol., 2015,196:540-549. |
[2] | JIANG S S, HUANG L B, TUAN A H , et al. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, 2016,142:64-71. |
[3] | LYU H, TANG J, HUANG Y , et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J., 2017,322:516-524. |
[4] | PAN J J, JIANG J, XU R K , Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar. Chemosphere, 2014,101:71-76. |
[5] | ZHU K R, CHEN C L, LU S H , et al. MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped grapheme-CNT frameworks as a recyclable catalyst for Cr(VI) reduction with formic acid. Carbon, 2019,148:52-63. |
[6] | WEN T, WANG J, YU S J , et al. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid and dyes. ACS Sustainable Chem. Eng., 2017,5:4371-4380. |
[7] | GAO Y, CHEN C L, TAN X L , et al. , Polyaniline-modified 3D- flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interf. Sci., 2016,476:62-70. |
[8] | HU B W, HU Q Y, XU D , et al. The adsorption of U(VI) on carbonaceous nanofibers: a combined batch, EXAFS and modeling techniques. Sep. Pur. Technol., 2017,175:140-146. |
[9] | ZHU K R, CHEN C L, XU H , et al. Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@zeolitic ldazolate framevorks-8 microspheres. ACS Sustainable Chem. Eng., 2017,5:6795-6802. |
[10] | WEN T, WANG J, LI X , et al. Production of a generic magnetic Fe3O4 nanoparticles decorated tea waste composites for highly efficient sorption of Cu(II) and Zn(II). J. Environ. Chem. Eng., 2017,5:3656-3666. |
[11] | HU B W, QIU M Q, HU Q Y , et al. Decontamination of Sr(II) on magnetic polyaniline/graphene oxide composites: evidence from experimental, spectroscopic, and modeling investigation. ACS Sustain. Chem. & Eng., 2017,5:6924-6931. |
[12] | QIU M Q, WANG M, ZHAO Q Z , et al. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate. Chemosphere, 2018,201:764-771. |
[13] | HU B W, GUO X J, ZHENG C , et al. Plasma-enhanced amidoxime/ magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques. Chem. Eng. J., 2019,357:66-74. |
[14] | WANG S, GAO B, ZIMMERMAN A R , et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour. Technol., 2015,175:391-395. |
[15] | GU P C, SONG S, ZHANG S , et al. Enrichment of U(VI) on polyaniline modified MXene composites studied by batch experiment and mechanism investigation. Acta Chim. Sinica, 2018,76:701-708. |
[16] | HU B W, CHEN G H, JIN C G , et al. Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchorednanoscale zero-valent iron. J. Hazard. Mater., 2017,336:214-221. |
[17] | SUN B, CHAI J L, CHAI Z Q , et al. A surfactant-free microemulsion consisting of water, ethanol, and dichloromethane and its template effect for silica synthesis. J. Colloid Interf. Sci., 2018,526:9-17. |
[18] | LI L, HUANG S Y, WEN T , et al. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). J. Colloid Interf. Sci., 2019,543:225-236. |
[19] | WANG H, GAO B, WANG S , et al. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol., 2015,197:356-362. |
[20] | ZHU X, TSANG D C, CHEN F , et al. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. J. Environ. Technol., 2015,36:3094-3102. |
[21] | SHI S Q, YANG J K, LIANG S , et al. Enhanced Cr Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles. Sci. Total Environ., 2018, 628-629:499-508. |
[22] | YAO Y, GAO B, FANG J , et al. Characterization and environmental applications of clay-biochar composites. Chem. Eng. J., 2014,242:136-143. |
[23] | CHEN T, ZHOU Z, XU S , et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol., 2015,190:388-394. |
[24] | ZHU K R, GAO Y, TAN X L , et al. Polyaniline-modified Mg/Al layered double hydroxide composites and their application in efficient removal of Cr(VI). ACS Sustainable Chem. Eng., 2016,4:4361-4369. |
[25] | DONG H, DENG J, XIE Y , et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J. Hazard Mater., 2017,332:79-86. |
[26] | ZHANG L, FU F L, TANG B . Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres composites. Chem. Eng. J., 2019,356:151-160. |
[27] | LIU W, SUN W L, HAN Y F , et al. Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content, Colloids Surf, A-physicochem. Eng. Asp., 2014,452:138-147. |
[28] | PAN J J, JIANG J, XU R K . Adsorption of Cr(III) from acidic solutions by crop straw derived biochars. J. Environ. Sci., 2013,25:1957-1965. |
[29] | XIAO R, WANG J J, LI R H , et al. Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere, 2018,208:408-416. |
[30] | CHOUDHARY B, PAUL D . Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J. Environ. Chem. Eng., 2018,6:2335-2343. |
[31] | REGUYAL F, SARMAH A K, GAO W . Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J. Hazard Mater., 2017,321:868-878. |
[32] | GAN C, LIU Y, TAN X , et al. Effect of porous zincebiochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Adv., 2015,5:35107-35115. |
[33] | ALMEIDA C, DEBACHER N, DOWNS A , et al. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interf. Sci., 2009,332:46-53. |
[34] | LANGMUIR I . The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918,40:1361-1403. |
[35] | ZHANG B G, WANG S, DIAO M H , et al. Microbial community responses to vanadium distributions in mining geological environments and bioremediation. J. Geophys. Res. Biogeo., 2019,124:601-615. |
[36] | INYANG M, GAO B, YAO Y , et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol., 2012,110:50-56. |
[37] | SHI J X, ZHANG B G, QIU R , et al. Microbial chromate reduction coupled to anaerobic oxidation of elemental sulfur or zerovalent iron. Environ. Sci. Technol., 2019,53:3198-3207. |
[38] | ZHANG B G, CHENG Y T, SHI J X , et al. Insights into interactions between vanadium (V) bio-reduction and pentachlorophenol dechlorination in synthetic groundwater. Chem. Eng. J., 2019,375:121965. |
[1] | 吴光宇, 舒松, 张洪伟, 李建军. 接枝内酯基活性炭增强苯乙烯吸附性能研究[J]. 无机材料学报, 2024, 39(4): 390-398. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[4] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[5] | 郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536. |
[6] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[7] | 于业帆, 徐玲, 倪忠斌, 施冬健, 陈明清. 普鲁士蓝/生物炭材料的制备及其氨氮吸附机理[J]. 无机材料学报, 2023, 38(2): 205-212. |
[8] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[9] | 汤亚, 孙盛睿, 樊佳, 杨庆峰, 董满江, 寇佳慧, 刘阳桥. 粉煤灰衍生水合硅酸钙PEI改性及吸附去除Cu(II)与催化降解有机污染物[J]. 无机材料学报, 2023, 38(11): 1281-1291. |
[10] | 戴洁燕, 冯爱虎, 米乐, 于洋, 崔苑苑, 于云. NaY沸石分子吸附涂层对典型空间污染物的吸附机制研究[J]. 无机材料学报, 2023, 38(10): 1237-1244. |
[11] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[12] | 刘城, 赵倩, 牟志伟, 雷洁红, 段涛. 新型铋基SiOCNF复合膜对放射性气态碘的吸附性能[J]. 无机材料学报, 2022, 37(10): 1043-1050. |
[13] | 周帆, 毕辉, 黄富强. 用稻壳制备亚甲基蓝高吸附容量的超高比表面积活性炭[J]. 无机材料学报, 2021, 36(8): 893-903. |
[14] | 余祥坤, 刘坤, 李志鹏, 赵雨露, 沈锦优, 茆平, 孙爱武, 蒋金龙. 铜/凹凸棒石复合材料高效吸附放射性碘离子性能[J]. 无机材料学报, 2021, 36(8): 856-864. |
[15] | 苏莉, 杨建平, 兰悦, 王连军, 江莞. 纳米铁颗粒及其复合材料的界面设计及环境修复应用[J]. 无机材料学报, 2021, 36(6): 561-569. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||