无机材料学报 ›› 2019, Vol. 34 ›› Issue (11): 1210-1216.DOI: 10.15541/jim20180522 CSTR: 32189.14.10.15541/jim20180522
代艳南1,杨帅1,沈阳2,单永奎1,杨帆1(),赵庆彪2(
)
收稿日期:
2018-11-08
出版日期:
2019-11-20
网络出版日期:
2019-05-13
DAI Yan-Nan1,YANG Shuai1,SHEN Yang2,SHAN Yong-Kui1,YANG Fan1(),ZHAO Qing-Biao2(
)
Received:
2018-11-08
Published:
2019-11-20
Online:
2019-05-13
Supported by:
摘要:
黄光荧光材料在近紫外(NUV)芯片激发的白光发光二极管(W-LED)的制造中起重要作用。在本研究中, 通过在Gd2W3O12基质中共掺Tb 3+/Eu 3+或Tb 3+/Sm 3+, 从而获得较强的黄光发射。由于Gd 3+的有效激发通常在深紫外区, 在Gd2W3O12中并不会被382 nm的紫外光激发, 因此Gd 3+对Tb 3+/Eu 3+、Tb 3+/Sm 3+共掺杂的黄光发射并无影响。而Tb 3+与Gd 3+具有相似的离子半径, Tb 3+在全浓度范围内可以对Gd 3+进行取代。当Tb 3+离子掺杂浓度为75mol%时, 该体系绿光的发射强度达到最强, 对应的内量子产率(IQE)为37.6%。在最佳Tb 3+掺杂浓度下, 通过引入可以被近紫外光有效激发的Eu 3+或Sm 3+, 在Gd2W3O12基质中实现Tb 3+/Eu 3+或Tb 3+/ Sm 3+共同掺杂, 得到了高亮度的黄色发光, IQE分别达到39.6%和47.8%。利用制备的Gd0.494Tb1.5Eu0.006W3O12和Gd0.494Tb1.5Sm0.006W3O12黄光荧光粉与NUV-蓝色芯片成功组装了W-LED器件。由此可见, Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm)荧光粉有望用于组装W-LED器件。此外, 全范围掺杂法可用于其他体系以获得高效的荧光粉。
中图分类号:
代艳南, 杨帅, 沈阳, 单永奎, 杨帆, 赵庆彪. 全范围掺杂调制强黄色发光Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm)荧光粉的研究[J]. 无机材料学报, 2019, 34(11): 1210-1216.
DAI Yan-Nan, YANG Shuai, SHEN Yang, SHAN Yong-Kui, YANG Fan, ZHAO Qing-Biao. Intense Yellow Emission from Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm) Phosphors Tuned through Full Range Doping[J]. Journal of Inorganic Materials, 2019, 34(11): 1210-1216.
Fig. 1 (a) The polyhedron models of the crystal structure of Gd2W3O12 from perspectives of x axis, (b) the one-dimensional chain structure of [GdO8] polyhedrons
Fig. 3 (a) The excitation spectra of Gd2-xW3O12: xTb3+ (x= 0.25, 0.75, 1.0, 1.25, 1.5, 1.75, 2.00) monitored with 549 nm emission; (b) The concentration dependent excitation intensity of 7F6→5D4 transition of Tb3+ at 382 nm in Gd2-xW3O12: x Tb3+ (a) Coloful spectra are available on website
Fig. 4 (a) The emission spectra of Gd2-xW3O12: xTb3+ (x=0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) phosphors under 382 nm ultraviolet excitation; (b) The concentration dependent 549 nm emission intensity of Gd2-xW3O12: xTb3+ (where x=0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) phosphors
Fig. 5 (a, b) The excitation spectra of Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm), (c, d) the emission spectra of Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm) with 382 nm excitation Colourful spectra are available on website
Sample | λex/nm | IQE | CIE coordinates (x, y) |
---|---|---|---|
YAG: Ce3+ (Nichia, Japan) | 430 | ~90% | Yellow |
Sr3AlO4F: Ce3+[ | 430 | 84% | Yellow |
Gd3Al2Ga3O12: Ce3+[ | 435 | 81.9% | Yellow |
La3Si6N11: Ce3+[ | 450 | 78.6% | (0.422, 0.553) |
LuVO4: Bi3+[ | 305 | 68% | Yellow |
Tb2.82Ce0.09Eu0.09Al5O12[ | 460 | 40% | Yellow |
Sr3Lu0.95Ce0.05Al2O7.5[ | 450 | 41% | (0.454, 0.533) |
Ca1.5Mn0.5Gd7.6Ce0.4(SiO4)6O2[ | 330 | 33.9% | (0.552, 0.423) |
NaSc0.75Mn0.20Eu0.05Si2O6[ | 365 | 33% | (0.431, 0.465) |
La0.90Tb0.08Eu0.02NbO4[ | 261 | 30% | (0.473, 0.500) |
Gd0.86Eu0.12Tb0.02NbO4[ | 260 | 21.1% | Yellow |
Gd0.494Tb1.5Sm0.006W3O12 (This work) | 382 | 47.8% | (0.510, 0.456) |
Gd0.494Tb1.5Eu0.006W3O12 (This work) | 382 | 39.6% | (0.491, 0.472) |
Table 1 Comparison of the IQE and CIE coordinates of Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm) with other yellow phosphors
Sample | λex/nm | IQE | CIE coordinates (x, y) |
---|---|---|---|
YAG: Ce3+ (Nichia, Japan) | 430 | ~90% | Yellow |
Sr3AlO4F: Ce3+[ | 430 | 84% | Yellow |
Gd3Al2Ga3O12: Ce3+[ | 435 | 81.9% | Yellow |
La3Si6N11: Ce3+[ | 450 | 78.6% | (0.422, 0.553) |
LuVO4: Bi3+[ | 305 | 68% | Yellow |
Tb2.82Ce0.09Eu0.09Al5O12[ | 460 | 40% | Yellow |
Sr3Lu0.95Ce0.05Al2O7.5[ | 450 | 41% | (0.454, 0.533) |
Ca1.5Mn0.5Gd7.6Ce0.4(SiO4)6O2[ | 330 | 33.9% | (0.552, 0.423) |
NaSc0.75Mn0.20Eu0.05Si2O6[ | 365 | 33% | (0.431, 0.465) |
La0.90Tb0.08Eu0.02NbO4[ | 261 | 30% | (0.473, 0.500) |
Gd0.86Eu0.12Tb0.02NbO4[ | 260 | 21.1% | Yellow |
Gd0.494Tb1.5Sm0.006W3O12 (This work) | 382 | 47.8% | (0.510, 0.456) |
Gd0.494Tb1.5Eu0.006W3O12 (This work) | 382 | 39.6% | (0.491, 0.472) |
Fig. 6 The 1931 CIE coordinates diagram of (a) Gd2-xTbxW3O12 (x=0, 0.25, 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00), (b) Gd0.5-yTb1.5EuyW3O12 (y=0, 0.002, 0.004, 0.006, 0.008, 0.010, and 0.020) and (c) Gd0.5-yTb1.5SmyW3O12 (y=0, 0.002, 0.004, 0.006, 0.008, 0.010, and 0.020). The inserts in (b) and (c) are W-LED (1W), which was fabricated by Gd0.494Tb1.5Eu0.006W3O12 or Gd0.494Tb1.5Sm0.006W3O12 phosphors and NUV-blue chip, respectively
Samples | y (Eu3+) | CIE coordinates (x, y) | y (Sm3+) | CIE coordinates (x, y) |
---|---|---|---|---|
1 | 0 | (0.140, 0.562) | 0 | (0.140, 0.562) |
2 | 0.002 | (0.416, 0.529) | 0.002 | (0.430, 0.516) |
3 | 0.004 | (0.468, 0.490) | 0.004 | (0.476, 0.480) |
4 | 0.006 | (0.491, 0.472) | 0.006 | (0.510, 0.456) |
5 | 0.008 | (0.501, 0.459) | 0.008 | (0.497, 0.460) |
6 | 0.010 | (0.518, 0.444) | 0.010 | (0.508, 0.450) |
7 | 0.020 | (0.572, 0.400) | 0.020 | (0.528, 0.423) |
Table 2 The CIE coordinates of Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm)
Samples | y (Eu3+) | CIE coordinates (x, y) | y (Sm3+) | CIE coordinates (x, y) |
---|---|---|---|---|
1 | 0 | (0.140, 0.562) | 0 | (0.140, 0.562) |
2 | 0.002 | (0.416, 0.529) | 0.002 | (0.430, 0.516) |
3 | 0.004 | (0.468, 0.490) | 0.004 | (0.476, 0.480) |
4 | 0.006 | (0.491, 0.472) | 0.006 | (0.510, 0.456) |
5 | 0.008 | (0.501, 0.459) | 0.008 | (0.497, 0.460) |
6 | 0.010 | (0.518, 0.444) | 0.010 | (0.508, 0.450) |
7 | 0.020 | (0.572, 0.400) | 0.020 | (0.528, 0.423) |
[1] | CRAWFORD M H . LEDs for solid-state lighting: Performance challenges and recent advances. IEEE Journal of Selected Topics in Quantum Electronics, 2009,15(4):1028-1040. |
[2] | SHANG M, LI C, LIN J . How to produce white light in a single- phase host? Chemical Society Reviews, 2014,43(5):1372-1386. |
[3] | ZHOU J, XIA Z . Luminescence color tuning of Ce 3+, Tb 3+ and Eu 3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer. Journal of Materials Chemistry C, 2015,3(29):7552-7560. |
[4] | YANG P K, CHEN J C, CHUANG Y H . Improvement on reflective color measurement using a tri-color LED by multi-point calibration. Optics Communications, 2007,272(2):320-324. |
[5] | PARK J K, KIM C H, PARK S H , et al. Application of strontium silicate yellow phosphor for white light-emitting diodes. Applied Physics Letters, 2004,84(10):1647-1649. |
[6] | SONG G, MIAO J, JIANG B , et al. White LED based on near UV LED chip precoated with tri-color phosphors. Semiconductor Technology, 2011,36(8):586-590. |
[7] | YE S, XIAO F, PAN Y X , et al. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports, 2010,71(1):1-34. |
[8] | LIU Y, SILVER J, XIE R J , et al. An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application. Journal of Materials Chemistry C, 2017,5(2):12365-12377. |
[9] | LIU Y, ZHANG J, ZHANG C , et al. Ba9Lu2Si6O24:Ce 3+: an efficient green phosphor with high thermal and radiation stability for solid-state lighting. Advanced Optical Materials, 2015,3(8):1096-1101. |
[10] | LIN C C, TANG Y S, HU S F , et al. KBaPO4: Ln (Ln=Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes. Journal of Luminescence, 2009,129(12):1682-1684. |
[11] | LI P, WANG Z, YANG Z , et al. Luminescent characteristics of LiCaBO3: M (M=Eu 3+, Sm 3+, Tb 3+, Ce 3+, Dy 3+) phosphor for white LED. Journal of Luminescence, 2010,130(2):222-225. |
[12] | TIAN Y, CHEN B, HUA R , et al. Co-precipitation synthesis and characterization of Bi 3+, Eu 3+ co-doped nanocrystal Gd2WO6 phosphors. J. Nanosci Nanotechnol, 2010,10(3):1943-1946. |
[13] | ZOU Z, WU T, LU H , et al. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals. RSC Advances, 2018,8(14):7679-7686. |
[14] | LI J, LI J G, LIU S , et al. Greatly enhanced Dy 3+ emission via efficient energy transfer in gadolinium aluminate garnet (Gd3Al5O12) stabilized with Lu 3+. Journal of Materials Chemistry C, 2013,1(45):7614-7622. |
[15] | SHANNON R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976,32(5):751-767. |
[16] | LEI, BINGFU, SHI -QING, , et al. Luminescence properties of Sm3+-doped Sr3Sn2O7 phosphor. Materials Chemistry & Physics, 2010,124(2):912-915. |
[17] | YU R, NOH H M, MOON B K , et al. Photoluminescence characteristics of Sm3+-doped Ba2CaWO6 as new orange-red emitting phosphors. Journal of Luminescence, 2014,152(5):133-137. |
[18] | JAIN A, SHYUE PING O, HAUTIER G , et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Materials, 2013,1(1):011002. |
[19] | HOU Z, CHENG Z, LI G , et al. Electrospinning-derived Tb2(WO4)3: Eu3+ nanowires: energy transfer and tunable luminescence properties. Nanoscale, 2011,3(4):1568-1574. |
[20] | RAI V K, RAI S B, RAI D K . Optical properties of Tb 3+ doped tellurite glass . Journal of Materials Science Letter, 2004,39(15):4971-4975. |
[21] | FOUASSIER C, SAUBAT B, HAGENMULLER P . Self-quenching of Eu 3+ and Tb 3+ luminescence in LaMgB5O10: a host structure allowing essentially one-dimensional interactions . Journal of Luminescence, 1981,23(3):405-412. |
[22] | DU Z, LIU Q, HOU T , et al. The effects of Tb3+ doping concentration on luminescence properties and crystal structure of BaF2 phosphor. Bulletin of Materials Science, 2015,38(3):1-5. |
[23] | LIU Y, ZHANG J, ZHANG C , et al. High efficiency green phosphor Ba9Lu2Si6O24:Tb3+: visible quantum cutting via cross-relaxation energy transfers. Journal of Physical Chemistry C, 2016,120(4):2362-2370. |
[24] | BLASSE G . Energy transfer in oxidic phosphors. Physics Letters A, 1968,28(6):444-445. |
[25] | VAN UITERT L G, JOHNSON L F . Energy transfer between rare-earth ions. The Journal of Chemical Physics, 1966,44(9):3514-3522. |
[26] | DEXTER D L, SCHULMAN J H . Theory of concentration quenching in inorganic phosphors. Journal of Chemical Physics, 1954,22(6):1063-1070. |
[27] | QIANG S . Influence of environment on the luminescence of rare earths. Journal of Luminescence, 1988, 40-41:113-114. |
[28] | ZHENG X, LUO H, LIU J , et al. Sr3AlO4F: Ce3+-based yellow phosphors: structural tuning of optical properties, and use in solid-state white lighting. Journal of Materials Chemistry C, 2013,1(45):7598-7607. |
[29] | LIU Y F, LIU P, WANG L , et al. A two-step solid-state reaction to synthesize the yellow persistent Gd3Al2Ga3O12: Ce 3+ phosphor with an enhanced optical performance for AC-LEDs. Chemical Communications, 2017,53(53):10636-10639. |
[30] | DU F, ZHUANG W, LIU R , et al. Synthesis, structure and luminescent properties of yellow phosphor La3Si6N11: Ce 3+ for high power white-LEDs. Journal of Rare Earths, 2017,35(11):1059-1064. |
[31] | FENGWEN K, MINGYING P, QINYUAN Z , et al. Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4 :Bi3+ phosphor for UV-converted white LEDs. Chemistry-A European Journal, 2015,20(36):11522-11530. |
[32] | NAZAROV M, NOH D Y, SOHN J , et al. Quantum efficiency of double activated Tb3Al5O12: Ce3+, Eu3+. Journal of Solid State Chemistry, 2007,180(9):2493-2499. |
[33] | TAO Z, ZHANG W, QIN L , et al. A yellow-emitting nanophosphor of Ce3+-activated aluminate Sr3LuAl2O7.5. Journal of Alloys & Compounds, 2014,588(5):540-545. |
[34] | LI G, GENG D, SHANG M , et al. Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow- emitting phosphors. Journal of Materials Chemistry, 2011,21(35):13334-13344. |
[35] | XIA Z, ZHANG Y, MOLOKEEV M S , et al. Structural and luminescence properties of yellow-emitting NaScSi2O6: Eu 2+ phosphors: Eu 2+ site preference analysis and generation of red emission by codoping Mn 2+ for white-light-emitting diode applications. Journal of Physical Chemistry C, 2013,117(40):20847-20854. |
[36] | LI K, ZHANG Y, LI X , et al. Host-sensitized luminescence in LaNbO4: Ln 3+(Ln 3+ = Eu 3+/Tb 3+/Dy 3+) with different emission colors. Physical Chemistry Chemical Physics, 2015,17(6):4283-4292. |
[37] | LIU X, CHEN C, LI S , et al. Host-sensitized and tunable luminescence of GdNbO4: Ln 3+(Ln 3+ = Eu 3+/Tb 3+/Tm 3+) nanocrystalline phosphors with abundant color. Inorganic Chemistry, 2016,55(20):10383-10396. |
[1] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
[2] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[3] | 景欣欣, 陈必清, 翟佳鑫, 袁美玲. Ni-Co-B-RE(Sm、Dy、Tb)复合电极: 化学沉积法制备及电催化析氢性能研究[J]. 无机材料学报, 2024, 39(5): 467-476. |
[4] | 李众少, 李明, 曹逊. 基于含氧氢化钆薄膜的宽波段调制光致变色智能窗[J]. 无机材料学报, 2024, 39(4): 441-448. |
[5] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[6] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[7] | 范栋, 钟鑫, 王亚文, 张振忠, 牛亚然, 李其连, 张乐, 郑学斌. 富铝CMAS对稀土硅酸盐环境障涂层的腐蚀行为与机制研究[J]. 无机材料学报, 2023, 38(5): 544-552. |
[8] | 杨佳雪, 李雯, 王燕, 朱昭捷, 游振宇, 李坚富, 涂朝阳. Dy3+: Y3Al5O12晶体的光谱与黄色激光性能[J]. 无机材料学报, 2023, 38(3): 350-356. |
[9] | 钱新宇, 王无敌, 宋青松, 董永军, 薛艳艳, 张晨波, 王庆国, 徐晓东, 唐慧丽, 曹桂新, 徐军. 0.6%Pr, x%La:CaF2的发光性能研究和Judd-Ofelt分析[J]. 无机材料学报, 2023, 38(3): 357-362. |
[10] | 王志强, 吴济安, 陈昆峰, 薛冬峰. 大尺寸Er,Yb:YAG单晶的生长及其性能[J]. 无机材料学报, 2023, 38(3): 329-334. |
[11] | 杨艳国, 任海深, 何代华, 林慧兴. 阳离子场强对BaO-SiO2-Ln2O3微晶玻璃结构及高温性能影响[J]. 无机材料学报, 2023, 38(10): 1207-1215. |
[12] | 杜邱静, 刘天智, 陈菊锋, 陈航榕. 普鲁士蓝基HClO荧光纳米探针及其对肿瘤细胞的特异性检测[J]. 无机材料学报, 2023, 38(1): 55-61. |
[13] | 陆晨辉, 葛万银, 宋盼盼, 张盼锋, 徐美美, 张伟. 用于白光LED稀土Eu掺杂SiAlON基荧光粉的发光性能[J]. 无机材料学报, 2023, 38(1): 97-104. |
[14] | 邓陶丽, 陈河莘, 黑玲丽, 李淑星, 解荣军. 第二相引入荧光转换材料实现激光驱动高均匀性白光光源[J]. 无机材料学报, 2022, 37(8): 891-896. |
[15] | 关旭峰, 李桂芳, 卫云鸽. Na1-xMxCaEu(WO4)3 (M=Li, K)红色荧光粉的微观结构与热猝灭特性研究[J]. 无机材料学报, 2022, 37(6): 676-682. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||