无机材料学报 ›› 2024, Vol. 39 ›› Issue (9): 1053-1062.DOI: 10.15541/jim20230596 CSTR: 32189.14.10.15541/jim20230596
收稿日期:
2023-12-25
修回日期:
2024-04-12
出版日期:
2024-09-20
网络出版日期:
2024-05-08
通讯作者:
韩颖超, 教授. E-mail: hanyingchao@whut.edu.cn作者简介:
陈甲(1995-), 男, 博士研究生. E-mail: 265998@whut.edu.cn
基金资助:
CHEN Jia(), FAN Yiran, YAN Wenxin, HAN Yingchao(
)
Received:
2023-12-25
Revised:
2024-04-12
Published:
2024-09-20
Online:
2024-05-08
Contact:
HAN Yingchao, professor. E-mail: hanyingchao@whut.edu.cnAbout author:
CHEN Jia (1995-), male, PhD candidate. E-mail: 265998@whut.edu.cn
Supported by:
摘要:
无机磷主要以磷酸根的形式存在, 在自然界生命循环和现代工业社会中发挥重要作用。磷酸根离子的快速高效定量检测一直是临床生化分析、工业生产和环境污染监测等领域的研究热点。本工作以聚丙烯酸(PAA)为络合剂, 通过与Ca2+和Ce3+的络合反应, 合成了具有良好分散性和稳定性的PAA-Ca(Ce)纳米团簇荧光探针。利用298 nm激发光照射该探针与磷酸根的反应产物, 建立其在352 nm处发射峰峰值强度与磷酸根浓度的线性关系图。实验结果表明, (Ca2++Ce3+)浓度为37.575 mmol/L的纳米荧光探针与磷酸根浓度的线性关系式为y=1.09x+2.05, 荧光强度可靠性范围为13.5~66.91 mmol/L。与钼锑抗分光光度法测试磷酸根对比, 该方法具有更高的回收率。大鼠血清无机磷检测实验验证了该方法的可靠性。以上结果表明本研究所合成的荧光探针具有良好的磷酸根定量检测性能。
中图分类号:
陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062.
CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus[J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062.
图1 PAA-Ca(Ce)纳米荧光探针的形貌尺寸和化学结构
Fig. 1 Morphology, size and structure of PAA-Ca(Ce) nanofluorescent probe (a) Cryo-TEM images; (b) Particle size statistical distribution calculated from cryo-TEM images; (c) DLS particle size distribution; (d) FT-IR spectra of the products of PAA-Ca(Ce) nanoprobes with PO43- solutions at concentration of 0 (I), 10 (II) and 50 (III) mmol/L
图2 PAA-Ca(Ce)纳米荧光探针检测PO43-的荧光稳定性
Fig. 2 Fluorescence stability of PAA-Ca(Ce) nanofluorescent probe for PO43- (a) Fluorescence emission spectra of PAA-Ca(Ce) and PO43- after reaction within 7 days; (b) Fluorescence emission spectra of the original PAA-Ca(Ce) solution and the cold-dry redissolved solution reacting with PO43-; (c) Fluorescence emission spectra of PAA-Ca(Ce) solution reacting with PO43- before and after filtration by ϕ0.22 µm membrane
图3 不同(Ca2++Ce3+)浓度下PAA-Ca(Ce)荧光探针与PO43-反应产物的荧光发射光谱图, 以及PO43-浓度-荧光强度线性关系
Fig. 3 Fluorescence emission spectra of the reaction products between PAA-Ca(Ce) fluorescent probes and PO43- with different concentrations of (Ca2++Ce3+), and corresponding linear relationship of PO43- concentration-fluorescence intensity (a-c) Fluorescence emission spectra of PAA-Ca(Ce) probe and PO43- with different concentrations excited at 298 nm excitation under the conditions of (Ca2++Ce3+) concentration of (a) 18.7875, (b) 35.575 and (c) 75.150 mmol/L, respectively; (d-f) Relationship curves and linear fitting relationships between fluorescence peak intensity at 352 nm and PO43- concentration under the conditions of (Ca2++Ce3+) concentration of (d) 18.7878, (e) 35.575 and (f) 75.150 mmol/L, respectively; Colorful figures are available on website
图4 低PO43-浓度下的PO43-浓度-荧光强度关系图
Fig. 4 Relationship between PO43- concentration and fluorescence intensity at low PO43-concentration (a) Fluorescence emission spectra of PAA-Ca(Ce) probe with different concentrations of PO43- at 298 nm excition at (Ca2++Ce3+) concentration of 35.575 mmol/L; (b-d) Relationship between the fluorescence peak intensity at 352 nm and the concentration of PO43- with their corresponding fitting curves derivated from different models; Colorful figures are available on website
图5 反应时间与温度对荧光强度的影响
Fig. 5 Influence of reaction time and temperature on fluorescence intensity (a, b) Changes of fluorescence intensity detected at different time; (d, c) Changes of fluorescence intensity detected at different temperatures; Colorful figures are available on website
PO43- added / (mmol·L-1) | FP method | MARSP | ||
---|---|---|---|---|
PO43- detected/ (mmol·L-1) | Recovery/ % | PO43- detected/ (mmol·L-1) | Recovery/ % | |
10 | 9.633 | 96.326 | 9.096 | 90.962 |
20 | 20.611 | 103.056 | 18.694 | 93.472 |
30 | 28.856 | 96.186 | 26.634 | 88.780 |
40 | 40.009 | 100.022 | 37.719 | 94.299 |
50 | 48.634 | 97.269 | 47.779 | 95.559 |
60 | 60.304 | 100.507 | 55.134 | 91.891 |
70 | 68.462 | 97.802 | 66.391 | 94.844 |
80 | 79.159 | 98.949 | 75.191 | 93.989 |
90 | 87.964 | 97.737 | 87.080 | 96.755 |
100 | 100.526 | 100.526 | 94.505 | 94.505 |
110 | 110.024 | 100.022 | 99.928 | 90.844 |
120 | 116.614 | 97.178 | 115.249 | 96.041 |
130 | 131.590 | 101.223 | 122.934 | 94.564 |
140 | 139.348 | 99.534 | 125.775 | 89.839 |
150 | 145.318 | 96.879 | 140.961 | 93.974 |
160 | 161.331 | 100.832 | 156.500 | 97.813 |
170 | 171.033 | 100.608 | 164.876 | 96.986 |
180 | 176.630 | 98.128 | 170.588 | 94.771 |
190 | 191.582 | 100.832 | 178.270 | 93.826 |
200 | 198.966 | 99.483 | 196.275 | 98.138 |
Average recovery (mean±SD)/% | 99.155±1.880 | 94.093±2.566 |
表1 荧光探针法和钼锑抗分光光度法测定PO43-的回收率
Table 1 Recovery of PO43- detected by fluorescence probe (FP) method in contrast to that by molybdenum-antimony resistance spectrophotometry (MARSP)
PO43- added / (mmol·L-1) | FP method | MARSP | ||
---|---|---|---|---|
PO43- detected/ (mmol·L-1) | Recovery/ % | PO43- detected/ (mmol·L-1) | Recovery/ % | |
10 | 9.633 | 96.326 | 9.096 | 90.962 |
20 | 20.611 | 103.056 | 18.694 | 93.472 |
30 | 28.856 | 96.186 | 26.634 | 88.780 |
40 | 40.009 | 100.022 | 37.719 | 94.299 |
50 | 48.634 | 97.269 | 47.779 | 95.559 |
60 | 60.304 | 100.507 | 55.134 | 91.891 |
70 | 68.462 | 97.802 | 66.391 | 94.844 |
80 | 79.159 | 98.949 | 75.191 | 93.989 |
90 | 87.964 | 97.737 | 87.080 | 96.755 |
100 | 100.526 | 100.526 | 94.505 | 94.505 |
110 | 110.024 | 100.022 | 99.928 | 90.844 |
120 | 116.614 | 97.178 | 115.249 | 96.041 |
130 | 131.590 | 101.223 | 122.934 | 94.564 |
140 | 139.348 | 99.534 | 125.775 | 89.839 |
150 | 145.318 | 96.879 | 140.961 | 93.974 |
160 | 161.331 | 100.832 | 156.500 | 97.813 |
170 | 171.033 | 100.608 | 164.876 | 96.986 |
180 | 176.630 | 98.128 | 170.588 | 94.771 |
190 | 191.582 | 100.832 | 178.270 | 93.826 |
200 | 198.966 | 99.483 | 196.275 | 98.138 |
Average recovery (mean±SD)/% | 99.155±1.880 | 94.093±2.566 |
图7 不同化学环境因素对PAA-Ca(Ce)纳米荧光探针的影响
Fig. 7 Influence of different chemical environmental factors on PAA-Ca(Ce) nano-fluorescent probes (a, d) Fluorescence emission spectra of PAA-Ca(Ce) after reaction with various substances and comparison of fluorescence intensity at 352 nm emission peak, respectively; (b, e) Fluorescence emission spectra of PAA-Ca(Ce) reacting with PO43- at different concentrations of NaCl (0-100 mmol/L) and comparison of emission peak fluorescence intensity at 352 nm, respectively; (c, f) Fluorescence emission spectra of PO43- detected by PAA-Ca(Ce) under the conditions of PO43- concentration at 10 and 50 mmol/L while medium composed by ammonia-ammonium chloride buffer or ultra-pure water, and the fluorescence intensity comparison diagram of the emission peak at 352 nm; Colorful figures are available on website
Sample | FP method | MARSP | p value |
---|---|---|---|
1 | 2.648 | 2.552 | 0.9626 |
2 | 2.375 | 2.451 | |
3 | 2.599 | 2.604 | |
Average±SD | 2.541±0.119 | 2.536±0.064 |
表2 大鼠血清中PO43-的测定
Table 2 Determination of PO43- in mouse serum
Sample | FP method | MARSP | p value |
---|---|---|---|
1 | 2.648 | 2.552 | 0.9626 |
2 | 2.375 | 2.451 | |
3 | 2.599 | 2.604 | |
Average±SD | 2.541±0.119 | 2.536±0.064 |
[1] | CIESLIK B, KONIECZKA P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 2017, 142(4): 1728. |
[2] | WHYTE M P. Hypophosphatasia-aetiology, nosology, pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology, 2016, 12: 233. |
[3] | PAN H, XU S, NI Y H. Rare-earth post-modified Zn-based coordination polymer microspheres: simple room-temperature preparation, fluorescent performances and application for detection of tryptophane. Sensors and Actuators B: Chemical, 2019, 283: 731. |
[4] | GUPTA SK, KADAM R M, PUJAR P K. Lanthanide spectroscopy in probing structure-property correlation in multi-site photoluminescent phosphors. Coordination Chemistry Reviews, 2020, 420: 213405. |
[5] | BINNEMANS K. Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 2015, 295: 1. |
[6] | SYAMCHAND S S, SONY G. Europium enabled luminescent nanoparticles for biomedical applications. Journal of Luminescence, 2015, 165: 190. |
[7] | XING Q, ZHANG X, WU D, et al. Ultrasound-assisted synthesis and characterization of heparin-coated Eu3+ doped hydroxyapatite luminescent nanoparticles. Colloid Interface Science Communication, 2019, 29: 17. |
[8] |
LU Y, ENEA P, ZOLTÁN M. Direct determination of dissolved phosphate and silicate in seawater by ion exclusion chromatography sector field inductively coupled plasma mass spectrometry. Analytical Chemistry, 2014, 86(6): 3222.
DOI PMID |
[9] | SAKTHIVEL R, GANESH R, SUGANYA S. Approximate controllability of fractional neutral stochastic system with infinite delay. Reports on Mathematical Physics, 2012, 70(3): 291. |
[10] | 孙小鹏.基于高光谱技术检测水体中无机磷含量的实验研究. 广州: 华南农业大学硕士论文, 2020. |
[11] | 李翠婷, 王文志, 李东升, 等. 连续流动分析法测定水中总磷不确定度的评定. 环境与发展, 2020, 32(1): 140. |
[12] | 王琴敏. 连续流动分析法同时测定水中总磷总氮. 当代化工研究, 2021, 92(15): 119. |
[13] |
HUANG Y, ZHANG Y B, HUO F J, et al. A new strategy: distinguishable multi-substance detection, multiple pathway tracing based on a new site constructed by the reaction process and its tumor targeting. Journal of the American Chemical Society, 2020, 142(43): 18706.
DOI PMID |
[14] |
JIA Q, ZHANG R L, WANG Y D, et al. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Science Bulletin, 2022, 67(3): 288.
DOI PMID |
[15] | 胡悦, 权思齐, 李佳楠, 等. 多肽荧光探针特异性识别细胞中的Cu2+和Cys. 中国科学: 化学, 2022, 52(1): 117. |
[16] |
ZHENG B, FAN J Y, CHEN B, et al. Rare-earth doping in nanostructured inorganic materials. Chemical Reviews, 2022, 122(6): 5519.
DOI PMID |
[17] | 刘文芳, 王连连, 王娜, 等. 新型稀土荧光探针的设计、合成及在检测杀草强中的应用. 稀土, 2021, 42(5): 95. |
[18] | TANG Z, CHEN H, HE H, et al. Assays for alkaline phosphatase activity: progress and prospects. Trac-Trends in Analytical Chemistry, 2019, 113: 32. |
[19] | HAN L, LIU S G, YANG, Y Z, et al. A lanthanide coordination polymer as a ratiometric fluorescent probe for rapid and visual sensing of phosphate based on the target-triggered competitive effect. Journal of Materials Chemistry C, 2020, 8(37): 13063. |
[20] |
WU H F, TONG C L. A Specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant, ACS Sensors, 2018, 3(8): 1539.
DOI PMID |
[21] |
LI G Y, TONG C L. Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer. Analytica Chimica Acta, 2020, 1133: 11.
DOI PMID |
[22] | 张小君.磷酸钙基质中阴离子对Eu3+荧光性能的影响规律及应用研究. 武汉: 武汉理工大学硕士论文, 2020. |
[23] | WEI J J, ZHU C L, ZENG Z H, et al. Bioinspired cellulose‐integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdisciplinary Materials, 2022, 1(4): 495. |
[24] | LI F, XING Q G, HAN Y C, et al. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. Materials Science & Engineering C-Materials for Biological Applications, 2017, 80: 688. |
[25] |
ESCUDERO A, CALVO M E, RIVERA-FERNANDEZ S, et al. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir, 2013, 29(6): 1985.
DOI PMID |
[26] | KIRWAN L J, FAWELL P D, VAN BRONSWIJK W. In situ FTIR-ATR examination of poly(acrylic acid) adsorbed onto hematite at low pH. Langmuir, 2003, 19(14): 5802. |
[27] | DING H C, PAN H H, XU X R, et al. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Crystal Growth & Design, 2014, 14(2): 763. |
[28] | LIU W Q, DU Z F, QIAN Y, et al. A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles. Sensors and Actuators B: Chemical, 2013, 176: 927. |
[29] | QIN J L, ZHONG Z Y, MA J. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin. Materials Science & Engineering C-Materials for Biological Applications, 2016, 62: 377. |
[30] |
ZHOU W T, WANG L, LIU C, et al. Quantification of cyclic DNA polymerization with lanthanide coordination nanomaterials for liquid biopsy. Chemical Science, 2020, 11(14): 3745.
DOI PMID |
[31] | ZHANG J, WANG Y H, WEN Y, et al. Luminescence properties of Ca10K(PO4)7:RE3+ (RE = Ce, Tb, Dy, Tm and Sm) under vacuum ultraviolet excitation. Journal of Alloys and Compounds, 2011, 509(14): 4649. |
[32] | AZENHA M E, BURROWS H D, FONSECA S M, et al. Luminescence from cerium(III) acetate complexes in aqueous solution: considerations on the nature of carboxylate binding to trivalent lanthanides. New Journal of Chemistry, 2008, 32(9): 1531. |
[33] | XU S H, LI L F, LIN D, et al. Rare-earth ions coordination enhanced ratiometric fluorescent sensing platform for quantitative visual analysis of antibiotic residues in real samples. Chinese Chemical Letters, 2023, 34(6): 308. |
[1] | 杜邱静, 刘天智, 陈菊锋, 陈航榕. 普鲁士蓝基HClO荧光纳米探针及其对肿瘤细胞的特异性检测[J]. 无机材料学报, 2023, 38(1): 55-61. |
[2] | 李妍妍, 彭宇思, 林成龙, 罗晓莹, 滕峥, 张曦, 黄政仁, 杨勇. 用于新型冠状病毒检测的纳米材料及生物传感技术[J]. 无机材料学报, 2023, 38(1): 3-31. |
[3] | 曹志军, 李在均. 钌-生物质碳人工酶的制备及在比色检测杀虫剂毒死蜱残留中的应用[J]. 无机材料学报, 2022, 37(5): 554-560. |
[4] | 山巍,傅正钱,张发强,马名生,刘志甫,李永祥. SnS2纳米片的制备及其对NO2气体的检测[J]. 无机材料学报, 2020, 35(4): 497-504. |
[5] | 程琴, 杨勇, 杨莉莉. 具有高类氧化酶活性的铂-金枝状纳米粒子用于检测抗坏血酸[J]. 无机材料学报, 2020, 35(10): 1169-1176. |
[6] | 邓敏,江奇,段志虹,刘青青,蒋理,卢晓英. 米粒状氧化铜化学修饰电极的制备及其对葡萄糖的检测[J]. 无机材料学报, 2019, 34(2): 152-158. |
[7] | 王林, 丁坤英, 林小娉, 李泽, 郑润国, 杨连威. 8YSZ双层热障涂层缺陷演变与微裂纹水浸超声宏观检测[J]. 无机材料学报, 2019, 34(12): 1265-1271. |
[8] | 王贵欣, 裴志彬, 叶长辉. 自供能柔性氧化石墨烯湿度传感器的喷墨印刷制备及性能研究[J]. 无机材料学报, 2019, 34(1): 114-120. |
[9] | 要美娜, 杨贤金, 崔振铎, 朱胜利, 李朝阳, 梁砚琴. 铋膜电极阳极溶出伏安法检测痕量Cd金属[J]. 无机材料学报, 2019, 34(1): 91-95. |
[10] | 樊懋, 王琳, 裴承新, 石伟群. 碱化插层二维过渡金属碳化物的制备及其对铀酰离子的电化学检测[J]. 无机材料学报, 2019, 34(1): 85-90. |
[11] | 赵海雷, 孙振川, 陈馈, 王宏志, 杨延栋, 周建军, 李凤远, 张兵, 宋法亮. Ca0.68Si9Al3(ON)16 : Eu2+带状荧光纳米纤维的制备、性能及盾构盘型滚刀的磨损检测[J]. 无机材料学报, 2018, 33(8): 866-872. |
[12] | 郭灵霞, 施雨辰, 赵振杰, 李欣. 微流控技术制备ZnO纳米棒及生物荧光检测性能研究[J]. 无机材料学报, 2018, 33(10): 1103-1109. |
[13] | 邓敏, 江奇, 方渊, 李欢, 邱家欣, 卢晓英. 碳纳米管/聚苯胺化学修饰电极的制备及其对抗坏血酸的检测[J]. 无机材料学报, 2018, 33(1): 53-59. |
[14] | 何 玲, 李乾坤, 李文生, 崔 帅. 三基色镍基自敏复合涂层的制备及其性能研究[J]. 无机材料学报, 2017, 32(1): 56-62. |
[15] | 周佳佳, 邱建荣. 单个纳米颗粒的上转换光谱现象研究[J]. 无机材料学报, 2016, 31(10): 1023-1030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||