| [1] | XIE Y Z, WU S H, ZHAO L, et al. Photocatalytic degradation of p-fluorobenzoic acid in sewage over Pt /TiO2. J. Mol. Catal. (China), 2012, 26: 449-455. | 
																													
																						| [2] | LI X Z, LI F B. Study of Au/Au3+-TiO2 Photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol., 2001, 35: 2381-2387. | 
																													
																						| [3] | FENG YU, LIU XIN-YONG, JIANG ZHI, et al. Photocatalysis activity of Pt /TiO2 toward low concentration NO abatement. J. Mol. Catal. (China), 2013, 27: 76-82. | 
																													
																						| [4] | KUDO A, OMORI K, KATO H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc., 1999, 121: 11459-11467. | 
																													
																						| [5] | LIN X P, HUANG T, HUANG F Q, et al. Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. J. Phys. Chem. B, 2006, 110(48): 24629-24634. | 
																													
																						| [6] | DUNKLE S S, SUSLICK K S. Photodegradation of BiNbO4 powder during photocatalytic reactions. J. Phys. Chem. C, 2009, 113(24): 10341-10345. | 
																													
																						| [7] | ZHAO X, XU T G, YAO W Q, et al. Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation. App. Surf. Sci., 2009, 255: 8036-8040. | 
																													
																						| [8] | SHI R, LIN J, WANG Y J, et al. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression. J. Phys. Chem. C, 2010, 114: 6472-6477. | 
																													
																						| [9] | PAN C S, ZHU Y F. Size-controlled synthesis of BiPO4 nanocrystals for enhanced photocatalytic performance. J. Mater. Chem., 2011, 21: 4235-4241. | 
																													
																						| [10] | LUMETTA G. J, MCNAMARA B K, BUCK E C, et al. Characterization of high phosphate radioactive tank waste and simulant development. Environ. Sci. Technol., 2009, 43(20): 7843-7848. | 
																													
																						| [11] | PAN C S, XU J, CHEN Y, et al. Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B. Appl. Catal B: Environ., 2012, 115-116: 314-319. | 
																													
																						| [12] | ROSE C L, MOONEY S. Polymorphic forms of bismuth phosphate. Zeitschrift für Kristallographie, Bd. , 1962, 117: 371-385. | 
																													
																						| [13] | BALTASAR R, SEBASTIAN B, MIGUEL A G ARANDA, et al. Syntheses, crystal structures, and characterization of bismuth phosphates. Inorg. Chem., 1994, 33: 1869-1874. | 
																													
																						| [14] | LI G F, DING Y, ZHANG Y F, et al. Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances. J. Colloid Interface Sci., 2011, 363: 497-503. | 
																													
																						| [15] | FU X Z, WALTER A Z, YANG Q, et al. Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on Sol-Gel-derived titania unmodified and modified with H2SO4. J. Catal., 1997, 168(2): 482-490. | 
																													
																						| [16] | László K, SZILVIA P, IMRE B, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chem. Mater., 2007, 19(19): 4811-4819. | 
																													
																						| [17] | BI Y P, OUYANG S X, NAOTO U, et al. Facet effect of single-crystalline Ag3PO4 Sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc., 2011, 133(17): 6490-6492. | 
																													
																						| [18] | JI F, LI C L, ZHANG J H. Hydrothermal synthesis of Li9Fe3(P2O7)3(PO4)2 nanoparticles and their photocatalytic properties under visible-light illumination. ACS Appl. Mater. Interfaces, 2010, 2(6): 1674-1678. | 
																													
																						| [19] | LONG B H, HUANG J H, WANG X C. Photocatalytic degradation of benzene in gas phase by nanostructured BiPO4 catalysts. Materials International, 2012, 22(6): 644-653. | 
																													
																						| [20] | PAN C S, ZHU Y F. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol., 2010, 44: 5570-5574. | 
																													
																						| [21] | LV T, PAN L K, LIU X J, et al. Enhanced visible-light photocatalytic degradation of methyl orange by BiPO4-CdS composites synthesized using a microwave-assisted method. RSC Adv., 2012, 2: 12706-12709. | 
																													
																						| [22] | XU H, XU Y G, LI H M, et al. Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. Dalton Trans., 2012, 41: 3387-3394. | 
																													
																						| [23] | CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev., 2010, 39: 4206-4219. | 
																													
																						| [24] | YOU X F, CHEN F, ZHANG J L, et al. Photocatalytic degradation of methyl orange on TiO2 promoted by silver. Chin. J. Catal., 2006, 27: 270-274. | 
																													
																						| [25] | SUBRAMANIAN V, WOLF E E, KAMAT P V. Catalysis with TiO2/gold nanocomposites: Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc., 2004, 126: 4943-4950. | 
																													
																						| [26] | KIM W, TACHIKAWA T, MAJIMA T, et al. Photocatalysis of dye- sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J. Phys. Chem. C, 2009, 113: 10603-10609. |