[1] ZHANG Qing-Hong. Progress on TiO2-based nanomaterials and its utilization in the clean energy technology. Journal of Inorganic Materials, 2012, 27(1): 1?10.
[2] Linsebigler A L, Lu G Q, John T Y, Jr. Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3): 735–758.
[3] Wu Y M, Zhang J L, Xiao L, et al. Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl. Catal. B, 2009, 88(3): 525–532.
[4] Wei C, Lin W Y, Zainal Z, et al. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ. Sci. Technol., 1994, 28(5): 934–938.
[5] Desilvestro J, Graetzel M, Kaven L. Highly efficient sensitization of titanium dioxide. J. Am. Chem. Soc., 1985, 107(10): 2988–2990.
[6] DING Hui, ZHANG Nuo, RONG Fei, et al. Preparation, characterization and bactericidal activity of N-F-codoped TiO2 film. Journal of Inorganic Materials, 2011, 26(5): 517?522.
[7] ZHOU Wen-Qian, LU Yu-Ming, CHEN Chang-Zhao, et al. Effect of Li-doped TiO2 compact layers for dye sensitized solar cells. Journal of Inorganic Materials, 2011, 26(8): 819?822.
[8] Tong S F, Jin H Y, Zheng D F, et al. Investigations on copper-titanate intercalation materials for amperometric sensor. Biosens. Bioelectron, 2009, 24(8): 2404–2409.
[9] Ntho T A, Anderson J A, Scurrell M S. CO oxidation over titanate nanotube supported Au: Deactivation due to bicarbonate. J. Catal., 2009, 261(1): 94–100.
[10] Yang D J, Zheng Z F, Zhu H Y, et al. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater., 2008, 20(14): 2777–2781.
[11] Wang Y M, Du G J, Liu H, et al. Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater., 2008, 18(7): 1131–1137.
[12] ZHOU Wen-Qian, LU Yu-Ming, CHEN Chang-Zhao, et al. Synthesis and photocatalytic activity of vanadium doped titania hollow microspheres. Journal of Inorganic Materials, 2009, 24(4): 671?674.
[13] YU Wei-Wei, ZHANG Qing-Hong, SHI Guo-Ying, et al. Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties. Journal of Inorganic Materials, 2011, 26(7): 747?752.
[14] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499.
[15] Mullin J W. Crystallization, 4th Ed. Butterworth Heinemann, Boston, 2001.
[16] Santen R A V. The Ostwald step rule. J. Phys. Chem., 1984, 88(24): 5768–5769.
[17] Cushing B L, Kolesnichenko V L, O’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., 2004, 104(9): 3893–3946.
[18] Smigelskas A D, Kirkendall E O. Zinc diffusion in alpha brass. Trans. AIME, 1947, 171: 130–142.
[19] Banfield J F, Welch S A, Zhang H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289(5480): 751–754.
[20] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971.
[21] Zhao B, Chen F, Huang Q W, et al. Brookite TiO2 nanoflowers. Chem. Commun., 2009, 34: 5115–5117.
[22] Zhao B, Chen F, Jiao Y C, et al. Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. J. Mater. Chem., 2010, 20(37): 7990–7997.
[23] Jiao Y C, Zhao B, Chen F, et al. Insight into the crystal lattice formation of brookite in aqueous ammonia media: the electrolyte effect. Cryst. Eng. Comm., 2011, 13(12): 4167–4173.
[24] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404(6773): 59–61.
[25] CHEN Chao, WANG Zhi-Yu. Synthesis and crystal growth mechanism of titanium dioxide nanorods. Journal of Inorganic Materials, 2012, 27(1): 45?48.
[26] Wang Y W, Xu H, Wang X B, et al. A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres. J. Phys. Chem. B, 2006, 110(28): 13835–13840.
[27] Zhao B, Chen F, Qu W W, et al. The evolvement of pits and dislocations on TiO2-B nanowires via oriented attachment growth. J. Solid State Chem., 2009, 182(8): 2225–2230.
[28] Du N, Zhang H, Chen B D, et al. Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature. J. Phys. Chem. C, 2007, 111(34): 12677–12680.
[29] Xu H L, Wang W Z, Zhu W, et al. Hierarchical-oriented attachment: from one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves. Cryst. Growth Des., 2007, 7(12): 2720–2724.
[30] Alexandrou I, Ang D K H, Mathur N D, et al. Encapsulated nanowires formed by nanotube-assisted oriented attachment. Nano Lett., 2004, 4(11): 2299–2302.
[31] Yang L X, Luo S L, Su F, et al. Carbon-nanotube-guiding oriented growth of gold shrubs on TiO2 nanotube arrays. J. Phys. Chem. C, 2010, 114(17): 7694–7699.
[32] Kazuma E, Matsubara K, Kelly K L, et al. Bi- and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces. J. Phys. Chem. C, 2009, 113(12): 4758–4762.
[33] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc., 2004, 126(45): 14943–14949.
[34] Ostwald W. Studien uber die bildung und umwandlung fester korper. Z Phys. Chem., 1897, 22: 289–330.
[35] Threlfall T. Structural and thermodynamic explanations of Ostwald’s Rule. Org. Process Res. Dev., 2003, 7(6): 1017–1027.
[36] Zhao B, Chen F, Gu X N, et al. Organic stabilizer-free synthesis of layered protonic titanate nanosheets. Chem. Asian J., 2010, 5(7): 1546–1549.
[37] Talapin D V, Rogach A L, Hasse M, et al. Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B, 2001, 105(49): 12278–12285.
[38] Redl F X, Cho K S, Murry C B, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature, 2003, 423(6943): 968–971.
[39] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanocrystal shape and size control: the case of cobalt. Science, 2001, 291(5511): 2115–2117.
[40] Wang Y Q, Hu G Q, Duan X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem. Phys. Lett., 2002, 365(5): 427–431.
[41] Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett., 2003, 82(2): 281–283.
[42] Tsai C C, Teng H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater., 2006, 18(2): 367–373.
[43] Yang W D, Hung K M. Optimization of the experimental conditions for the preparation of a thin strontium titanate film by hydrothermal process. J. Mater. Sci., 2002, 37(7): 1337–1342.
[44] Saponjic Z V, Dimitrijevic N M, Tiede D M, et al. Shaping nanometer-scale architecture through surface chemistry. Adv. Mater., 2005, 17(8): 965–971.
[45] Wu D, Liu J, Zhao X N, et al. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem. Mater., 2006, 18(2): 547–553. |