[1] Watenabe K, Yuasa M, Kida T, et al. High-performance oxygen- permeable membrances with an asymmetric structure using Ba0.05La0.05FeO3?δ perovskite-type oxide. Adv. Mater., 2010, 22(21): 2367–2370. [2] Luo H, Efimov K, Jiang H, et al. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angew. Chem. Int. Ed., 2011, 50(3): 759–763.[3] Huang Y H, Dass R I, Xing Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257.[4] Ghasdi M, Alamdari H, Royer S, et al. Electrical and CO gas sensing properties of nanostructured La1-xCexCoO3 perovskite prepared by activated reactive synthesis. Sens. Actuat. B, 2011, 156(1): 147–155.[5] Maignan A, Martin C, Pelloquin D, et al. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the “112” structure. J. Solid State Chem., 1999, 142(2): 247–260.[6] Akahoshi D, Ueda Y. Oxygen nonstoichiometry, structures, and physical properties of YBaCo2O5+x (0.00≤x≤0.52). J. Solid State Chem., 2001, 156(2): 355–363.[7] Frontera C, Caneiro A, Carrillo A E, et al. Tailoring oxygen content on PrBaCo2O5+δ layered cobalties. Chem. Mater., 2005, 17(22): 5439–5445.[8] Vogt T, Woodward P M, Karen P, et al. Low to high spin-state transition induced by charge ordering in antiferromagnetic YBaCo2O5. Phys. Rev. Lett., 2000, 84(13): 2969–2972.[9] Parfitt D, Chroneos A, Tarancón A, et al. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. J. Mater. Chem., 2011, 21(7): 2183–2186.[10] Streule S, Podlesnyak A, Sheptyakov D, et al. High-temperature order-disorder transition and polaronic conductivity in PrBaCo2O5.48. Phys. Rev. B, 2006, 73(9): 094203–1–5.[11] Moritomo Y, Akimoto T, Takeo M, et al. Metal-insulator transition induced by a spin-state transition in TbBaCo2O5+δ (δ=0.5). Phys. Rev. B, 2000, 61(20): 13325–13328.[12] Khalyavin D D, Argyriou D N, Amann U, et al. Spin-state ordering and magnetic structures in the cobaltites YBaCo2O5+δ (δ=0.50 and 0.44). Phys. Rev. B, 2007, 75(13): 134407–1–15. [13] Taskin A A, Lavrov A N. Origin of the large thermoelectric power in oxygen-variable RBaCo2O5+x (R=Gd, Nd). Phys. Rev. B, 2006, 73(12): 121101–1–4.[14] Zhang X, Hao H, Hu X. Electronic transport properties of YBaCo2-xCuxO5+δ (0≤x≤1) at high temperature. Physica B, 2008, 403(19/20): 3406–3409.[15] Motohashi T, Ueda T, Masubuchi Y, et al. Remarkable oxygen intake/release capability of BaYMn2O5+δ: applications to oxygen storage technologies. Chem. Mater., 2010, 22(10): 3192–3196.[16] Taskin A A, Lavrov A N, Ando Y. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett., 2005, 86(9): 091910–1–3. [17] Hao H, Zheng L, Wang Y, et al. Oxygen adsorption/desorption behavior of YBaCo4O7+δ and its application to oxygen removal from nitrogen. J. Rare Earth, 2007, 25(3): 275–281.[18] Kim G, Wang S, Jacobson A J, et al. Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin ?lms. Appl. Phys. Lett., 2006, 88(2): 024103–1–3.[19] Shen Z, Lu P, Yan G, et al. Enhancing the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O5+δ membranes by coating RBaCo2O5+δ (R= Pr, Nd, Sm, Gd) layers. Mater. Lett., 2010, 64(8): 980–982.[20] Chen T, Zhao H, Xu N, et al. Synthesis and oxygen permeation properties of a Ce0.8Sm0.2O2?δ–LaBaCo2O5+δ dual-phase composite membrane. J. Membr. Sci., 2011, 370(1/2): 158–165.[21] Xue J, Shen Y, He T. Performance of double-perovskite YBa0.5Sr0.5Co2O5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 2011, 36(11): 6894–6898.[22] Lee S J, Kim DS, Muralidharan P, et al. Improved electrochemical performance and thermal compatibility of Fe- and Cu-doped SmBaCo2O5+δ–Ce0.9Gd0.1O1.95 composite cathode for intermediate- temperature solid oxide fuel cells. J. Power Sources, 2011, 196(6): 3095–3098.[23] Liu J, Liu M, Collins G, et al. Epitaxial nature and transport properties in (LaBa)Co2O5+δ thin films. Chem. Mater., 2010, 22(3): 799–802. |