[1] |
Feng F, Geng M, Northwood D O. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int. J. Hydrogen Energy, 2001, 26(7): 725-734.
|
[2] |
Liu Y, Wang Y, Xiao L, et al. Study on the structure and electrochemical performance of AB3-type hydrogen storage composite electrode material. Int. J. Hydrogen Energy, 2007, 32(17): 4220-4224.
|
[3] |
Singh B K, Cho S W, Bartwal K S. Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y. J. Alloys Compd., 2009, 478(1/2): 785-788.
|
[4] |
Zhao X, Ma L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrogen Energy, 2009, 34(11): 4788-4796.
|
[5] |
Zhang W, Zhu Y, Yang C, et al. Effects of metal additive on electrochemical performances of Mg-based hydrogen storage materials prepared by hydriding combustion synthesis and subsequent mechanical milling (HCS+MM). Int. J. Hydrogen Energy, 2010, 35(15): 8241-8246.
|
[6] |
Tsukahara M, Takahashi K, Mishima T, et al. Phase structure of V-based solid solutions containing Ti and Ni and their hydrogen absorption–desorption properties. J. Alloys Compd., 1995, 224(1): 162-167.
|
[7] |
Tsukahara M, Takahashi K, Mishima T, et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≤x≤0.75). J. Alloys Compd., 1995, 226(1): 203-207.
|
[8] |
Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three dimensional network structure for high capacity metal hydride electrodes. J. Alloys Compd., 1997, 253-254: 583-586.
|
[9] |
Kuriyama N, Tsukahara M, Takahashi K, et al. Deterioration behavior of a multiphase vanadium-based solid solution alloy electrode. J. Alloys Compd., 2003, 356-357: 738-741.
|
[10] |
Zhang Q A, Lei Y Q, Yang X G, et al. Phase structure and electrochemical properties of Cr-added V3TiNi0.56Hf0.24Mn0.15 alloys. Int. J. Hydrogen Energy, 2000, 25(10): 977-981.
|
[11] |
Zhang Q A, Lei Y Q, Yang X G, et al. Effects of annealing treatment on phase structures, hydrogen absorption–desorption characteristics and electrochemical properties of a V3TiNi0.56Hf0.24Mn0.15Cr0.1 alloy. J. Alloys Compd., 2000, 305(1/2): 125-129.
|
[12] |
Kim J H, Lee H, Lee P S, et al. A study on the improvement of the cyclic durability by Cr substitution in V–Ti alloy and surface modification by the ball-milling process. J. Alloys Compd., 2003, 348(1/2): 293-300.
|
[13] |
Chai Y J, Yin W Y, Li Z Y, et al. Structure and electrochemical characteristics of Ti0.25–xZrxV0.35Cr0.1Ni0.3(x=0.05–0.15) alloys. Intermetallics, 2005, 13(11): 1141-1145.
|
[14] |
Qiao Y Q, Zhao M S, Zhu X J, et al. Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3(RE= Ce, Dy) hydrogen storage electrode alloys. Int. J. Hydrogen Energy, 2007, 32(15): 3427-3434.
|
[15] |
Yonkeu A L, Swainson I P, Dufour J, et al. Kinetic investigation of the catalytic effect of a body centered cubic-alloy TiV1.1Mn0.9(BCC) on hydriding/dehydriding properties of magnesium. J. Alloys Compd., 2008, 460(1/2): 559-564.
|
[16] |
Chu H L, Zhang Y, Sun L X, et al. The electrochemical properties of Ti0.9Zr0.2Mn1.5Cr0.3V0.3-x wt% La0.7Mg0.25Zr0.05Ni2.975Co0.525 (x=0,5,10) hydrogen storage composite electrodes. Int. J. Hydrogen Energy, 2007, 32(12): 1898-1904.
|
[17] |
Chu H, Zhang Y, Sun L, et al. Structure, morphology and hydrogen storage properties of composites prepared by ball milling Ti0.9Zr0.2Mn1.5Cr0.3V0.3 with La-Mg-based alloy. Int. J. Hydrogen Energy, 2007, 32(15): 3363-3369.
|
[18] |
Zhang X B, Chai Y J, Yin W Y, et al. Crystal structure and electrochemical properties of rare earth non-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery. J. Solid State Chem., 2004, 177(7): 2373-2377.
|
[19] |
Wang Y Z, Zhao M S, Li S C, et al. Structure and electrochemical characteristics of melted composite Ti0.10Zr0.15 V0.35Cr0.10Ni0.30–LaNi5 hydrogen storage alloys. Electrochim. Acta, 2008, 53(27): 7831-7837.
|
[20] |
Wang Y Z, Zhao M S. Structure and electrochemical characteristics of LaNi5-Ti0.10Zr0.16V0.34Cr0.10Ni0.30 composite alloy electrode. J. Rare Earths, 2010, 28(5): 774-780.
|
[21] |
Seo C Y, Choi S J, Choi J, et al. Effect of V and Zr on the electrochemical properties of La-based AB5-type metal hydride electrodes. J. Alloys Compd., 2003, 351(1/2): 255-263.
|
[22] |
Park H Y, Chang I, Cho W I, et al. Electrode characteristics of the Cr and La doped AB2-type hydrogen storage alloys. Int. J. Hydrogen Energy, 2001, 26(9): 949-955.
|
[23] |
Qiao Y Q, Zhao M S, Li M Y, et al. Microstructure and electrochemical performance of Ti0.17Zr0.08V0.34Pd0.01Cr0.1Ni0.3 electrode alloy. Scripta Materialia, 2006, 55(3): 279-282.
|
[24] |
杨桂玲, 王 春, 杨晓民, 等(YANG Gui-Ling, et al). 非金属与金属的协同作用对镁基储氢合金电化学性能的影响. 物理化学学报(Acta Phys. Chem. Sin.), 2010, 26(4): 833-839.
|
[25] |
Si T Z, Pang G., Liu D M, et al. Structural investigation and hydrogen storage properties of Ca3-xLaxMg2Ni13 alloys. Int. J. Hydrogen Energy, 2010, 35(3): 1267-1272.
|
[26] |
Dong Z, Wu Y, Ma L, et al. Microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33-xCaxNi2.75Co0.25 (x= 0–0.15) electrode alloys. Int. J. Hydrogen Energy, 2011, 36(4): 3050-3055.
|
[27] |
Iwakura C, Kajiya Y, Yoneyama H, et al. Self-discharge mechanism of nickel–hydrogen batteries using metal hydride anodes. J. Electrochem. Soc., 1989, 136(5): 1351-1355.
|
[28] |
Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd., 1993, 202(1/2): 183-197.
|
[29] |
Zheng G, Popov B N, White R E. Electrochemical determination of the diffusion coefficient of hydrogen through a LaNi4.25Al0.75 electrode in alkaline aqueous solution. J. Electrochem. Soc., 1995, 142(8): 2695-2698.
|