[1] Han Y, Hong S H, Xu K W. Porous nanocrystalline titania films by plasma electrolytic oxidation. Surf. Coat. Technol., 2002, 154(2/3): 314-318.[2] Han Y, Chen D H, Sun J F, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomater., 2008, 4(5): 1518-1529.[3] Hu H J, Liu X Y, Ding C X. Preparation and cytocompatibility of Si-incorporated nanostructured TiOB2 Bcoating. Surf. Coat. Technol., 2010, 204(20): 3265-3271.[4] Wu C T, Ramaswamy Y, Zreiqat H. Porous diopside (CaMgSiB2BOB6B) scaffold: a promising bioactive material for bone tissue engineering. Acta Biomater., 2010, 6(6): 2237-2245.[5] Zreiqat H, Ramaswamy Y, Wu C T. The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials, 2010, 31(12): 3175-3184.[6] Balasundaram G, Webster T J. A perspective on nanophase materials for orthopedic implant applications. J. Mater. Chem., 2006, 16(38): 3737-3745.[7] Hu H J, Liu X Y, Ding C X. Preparation and in vitro evaluation of nanostructured TiOB2B/TCP composite coating by plasma electrolytic oxidation. J. Alloys Compd., 2010, 498(2): 172-178.[8] Liu X Y, Zhao X B, Li B, et al. UV-irradiation-induced bioactivity on TiOB2B coatings with nanostructural surface. Acta Biomater., 2008, 4(3): 544-552.[9] Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide coatings containing Ca and P by hydrothermal treatment. J. Biomed. Mater. Res., 1995, 29(9): 1071-1079.[10] Huang P, Wang F, Xu K W, et al. Surface modification of titanium implant by microarc oxidation and hydrothermal synthesis. J. Biomed. Mater. Res. B, 2004, 70(2): 187-190.[11] Park I S, Lee M H, Bae T S, et al. Effects of anodic oxidation parameters on a modified titanium surface. J. Biomed. Mater. Res. B, 2008, 84(2): 422-429.[12] Wei D Q, Zhou Y, Jia D C, et al. Characteristic and in vitro bioactivity of a microarc-oxidized TiOB2B-based coating after chemical treatment. Acta Biomater., 2007, 3(5): 817-827.[13] Li Y, Lee I S, Cui F Z, et al. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials, 2008, 29(13): 2025-2032.[14] Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater., 2007, 3(4): 573-585.[15] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity- Biomaterials, 2006, 27(15): 2907-2915.[16] Guo H F, An M Z, Xu S, et al. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin Solid Films, 2005, 485(1/2): 53-58.[17] Zhang R F, Shan D Y, Chen R S, et al. Effects of electric parameters on properties of anodic coatings formed on magnesium alloys. Mater. Chem. Phys., 2008, 107(2/3): 356-363.[18] Han Y, Chen D H, Zhang L. Nanocrystallized SrHA/SrHA- SrTiOB3B/SrTiOB3B-TiOB2B multilayer coatings formed by micro-arc oxidation for photocatalytic application. Nanotechnology, 2008, 19(33): 335705.[19] Han Y, Sun J F, Huang X. Formation mechanism of HA-based coatings by micro-arc oxidation. Electrochem. Commun., 2008, 10(4): 510-513.[20] Gu Y W, Tay B Y, Lim C S, et al. Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials, 2005, 26(34): 6916-6923.[21] Yan X, Yu C, Zhou X, et al. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed., 2004, 43(44): 5980-5984.[22] Li X, Shi J L, Dong X P, et al. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J. Biomed. Mater. Res., 2008, 84A(1): 84-91.[23] Zhao Y, Zhang Y, Fang N, et al. Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J. Biomed. Mater. Res. B, 2007, 83B(1): 121-126.[24] Liu X Y, Zhao X B, Fu R K Y, et al. Plasma-treated nanostructured TiOB2B surface supporting biomimetic growth of apatite. Biomaterials, 2005, 26(31): 6143-6150.[25] Wang G C, Liu X Y, Gao J H, et al. In vitro bioactivity and phase stability of plasma-sprayed nanostructured 3Y-TZP coatings. Acta Biomater., 2009, 5(6): 2270-2278.[26] LeGeros R Z. Calcium phosphate-based osteoinductive materials. Chem. Rev., 2008, 108(11): 4742-4753.[27] Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 2002, 41(17): 3130-3146.[28] Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterals, 2003, 24(13): 2161-2175. |