[1] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001,292(5523):1897-1899. [2] Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown siliconnanowires. Science, 2000,287(5457):1471-1473. [3] Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arraysvertically grown on p-GaN. Adv. Mater.,2004,16(1):87-90. [4] Tien L C, Sadik P W, Norton D P, et al. Hydrogen sensing at room temperature with Pt-coated ZnO thin films andnanorods.Appl. Phys. Lett.,2005,87(22):222106-1-3. [5] Lee J S, Islam M S, Kim S. Direct formation of catalyst-free ZnO nanobridgedevices on an etched Si substrate using a thermal evaporation method. Nano Lett., 2006,6(7):1487-1490. [6] Lao C S, Liu J, Gao P X, et al.ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignmentacross Au electrodes. Nano Lett.,2006,6(2):263-266. [7] Keem K, Jeong D Y, Kim S, et al. Fabrication and device characterization of omega-shaped-gate ZnO nanowirefield-effect transistors. Nano Lett.,2006,6(7):1454-1458. [8] Wang Z L. Z nO nanowire and nanobelt platform fornanotechnology. Mater. Sci. Eng. R,2009,64(3/4):33-71. [9] Robin I C, Marotel P, El-Shaer A H, et al. Compared optical properties of ZnO heteroepitaxial,homoepitaxial 2D layers and nanowires. J.Cryst. Growth, 2009,311(7):2172-2175. [10] Yu D Q, Hu L Z, Li J, et al.Catalyst-free synthesis of ZnO nanorod arrays on InP (001) substrate by pulsedlaser deposition. Mater. Lett., 2008, 62(25):4063-4065. [11] Sun Y L, Bian J M, Li Q W, et al. Effects of substrate on the structure, morphology and opticalproperties of vertically aligned ZnO nanorods arrays grown by low-temperatureCBD method.J. Inorg. Mater.,2010,25(10):1115-1120. [12] Guo J H, Vayssieres L, Persson C, et al. Polarization-dependentsoft-X-ray absorption of highly oriented ZnO microrod arrays. J. Phys.: Condens. Matter., 2002,14(28):6969-6974. [13] Sham T K, Rivers M L. A brief overview of synchrotron radiation. Rev. Mineral. Geochem., 2002,49(1):117-147. [14] Chiou J W, Jan J C, Tsai H M, et al. Electronic structure of ZnO nanorods studied by angle-dependent X-rayabsorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett., 2004,84(18):3462-3464. [15] Vaithianathan V, Lee B T, Chang C H, et al. Characterization of As-doped, p-type ZnO by X-ray absorptionnear-edge structure spectroscopy. Appl.Phys. Lett.,2006,88(11):112103-1-3. [16] Fons P, Nakahara K, Yamada A, et al. A XANES study of Cu valency in Cu-Doped Epitaxial ZnO. Phys. Stat. Sol. (b), 2002,229(2):849-852.[17]XuS, Lao C S, Weintraub B, et al.Density-controlled growth of aligned ZnO nanowire arrays by seedless chemicalapproach on smooth surfaces printer-friendly. J. Mater. Res., 2008,23(8): 2072-2077. [18] Chiou J W, Kumar K P, Jan J C, et al. Diameter dependence of the electronic structure of ZnO nanorodsdetermined by X-ray absorption spectroscopy and scanning photoelectronmicroscopy. Appl. Phys. Lett.,2004,85(15):3220-3222. [19] Dong C L, Persson C, Vayssieres L, et al. Electronic structure of nanostructured ZnO from X-rayabsorption and emission spectroscopy and the local density approximation. Phys. Rev. B, 2004,70(19):195325-1-5.[20] Bian J M, Li X M, Gao X D, et al. Deposition and electrical properties of N–In codoped p-type ZnO filmsby ultrasonic spray pyrolysis. Appl.Phys. Lett.,2004,84(4):541-543. [21]Sun Y, Ketterson J B, Wong G K.Excitonic gain and stimulated ultraviolet emission in nanocrystallinezinc-oxide powder. Appl. Phys. Lett.,2000,77(15):2322-2324. [22]Bylander E G. Surface effectson the low-energy cathodoluminescence of Zinc oxide. J. Appl. Phys., 1978,49(3): 1188-1195. |