[1] 李吉东, 李玉宝, 王学江, 等(LI Ji-Dong, et al). 载铜锌纳米经基磷灰石的抗菌性能及机理研究. 无机材料学报(Journal of Inorganic Materials), 2006, 21(1): 162-168.
[2] 陈君华, 王 飞, 程年寿, 等(CHEN Jun-Hua, et al). 铜原位改性HMS材料的表征及抗菌性能. 无机材料学报(Journal of Inorganic Materials), 2009, 24(4): 695-701.
[3] Cioffi N, Torsi L, Ditaranto N, et al. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater., 2005, 17(21): 5255-5262.
[4] 戴晋明, 侯文生, 魏丽乔, 等(DAI Jin-Ming, et al). 载银锌4A沸石抗菌剂抗变色性能的研究. 无机材料学报(Journal of Inorganic Materials), 2008, 23(5): 1011-1015.
[5] Lu Z X, Zhou L, Zhang Z L, et al. Cell damage induced by photocatalysis of TiO2 thin films. Langmuir, 2003, 19(21): 8765-8768.
[6] Jones N, Ray B, Ranjit K T, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279(1): 71-76.
[7] Li Q X, Nishioka M, Kashiwagi H, et al. High-intensity atomic oxygen radical anion emission mechanism from 12CaO?7Al2O3 crystal surface. Surf. Sci., 2003, 527(1/2/3): 100-112.
[8] Wang L, Gong L, Zhao E, et al. Inactivation of Escherichia coli by O- water. Lett. Appl. Microbiol., 2007, 45(2): 200-205.
[9] Wang L, Yan L F, Zhao P T, et al. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution. Appl. Surf. Sci., 2008, 254(13): 4191-4200.
[10] Hayashi K, Matsuishi S, Kamiya T, et al. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature, 2002, 419(6906): 462-465.
[11] Miyakawa M, Kim S W, Hirano M, et al. Superconductivity in an inorganic electride 12CaO?7Al2O3:e-. J. Am. Chem. Soc., 2007,129(23): 7270-7271.
[12] Song C F, Sun J Q, Qiu S B, et al. Atomic fluorine anion storage emission material C12A7-F- and etching of Si and SiO2 by atomic fluorine anions. Chem. Mater., 2008, 20(10): 3473-3479.
[13] Sun J Q, Song C F, Ning S, et al. Preparation and characterization of storage and emission functional material of chlorine anion: [Ca24Al28O64]4+? (Cl-)3.80(O2-)0.10. Chin. J. Chem. Phys., 2009, 22(4): 417-422.
[14] Singh V K, Ali M M, Mandal U K. Formation kinetics of calcium aluminates. J. Am. Ceram. Soc., 1990, 73(4): 872-876.
[15] 朱英莲, 李远钊, 张培正, 等. 温度生长预测模型在大肠杆菌O157: H7控制中的应用. 食品科学, 2007, 28(3): 183-187.
[16] Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater., 2001, 3(7): 643-646.
[17] Sawai J, Shoji S, Igarashi H, et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng., 1998, 86(5): 521-522.
[18] Mendonca A F, Amoroso T L, Knabel S J. Destruction of gram-negative food-borne pathogens by high ph involves disruption of the cytoplasmic membrane. Appl. Environ. Microbiol., 1994, 60(11): 4009-4014.
[19] Sawai J, Kojima H, Igarashi H, et al. Escherichia coli damage by ceramic powder slurries. J. Chem. Eng. Jpn., 1997, 30(6): 1034-1039.
[20] Stoimenov P K, Klinger R L, Marchin G L, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17): 6679-6686.
[21] McCord J M. The evolution of free radicals and oxidative stress. American Journal of Medicine, 2000, 108(8): 652-659.
[22] Henchman M, Hierl P M, Paulson J F. Nucleophilic displacement vs proton transfer: the system OH-?(H2O)0,1,2+CH3Cl in the relative energy range 0.03-5eV. J. Am. Chem. Soc., 1985, 107(9): 2812-2814.
[23] Gao A M, Zhu X F, Wang H J, et al. Reduction features of NO over a potassium-doped C12A7-O- catalyst. J. Phys. Chem. B, 2006, 110 (24): 11854-11862.
[24] Lee J, Grabowski J J. Reactions of the atomic oxygen radical-anion and the synthesis of organic reactive Intermediates. Chemical Reviews, 1992, 92(7): 1611-1647.
[25] Dong T, Li J, Huang F, et al. One-step synthesis of phenol by O- and OH- emission material. Chem. Commun., 2005(21): 2724-2726.
[26] Wang Z X, Pan Y, Dong T, et al. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts. Appl. Catal. A-Gen., 2007, 320: 24-34.
[27] Zhao E, Wang L, Yan L F, et al. Surface modification of medical poly(vinyl chloride) with O- water. J. Appl. Polym. Sci., 2008, 110(1): 39-48. |